

UNIVERSITÀ DEGLI STUDI DI MILANO

Relative \mathbb{A}^1 -Contractibility of Smooth Schemes

Krishna Kumar MADHAVAN VIJAYALAKSHMI

Open Poincaré Conjecture

Is \mathbb{R}^n the unique open contractible smooth n-manifold?

Theorem: (Siebenmann, Stallings, et al. 1960's)

- A. For n < 3, \mathbb{R}^n is unique such manifold,
- From $n \ge 3$, there are prototypes of Whitehead manifolds \mathcal{W} which are contractible but *not* homeomorphic to \mathbb{R}^n ,
- B. For $n \ge 3$, \mathbb{R}^n is unique up to simply connectedness at infinity π_1^∞ , $\pi_1^\infty(\mathbb{R}^n) \simeq \mathbb{S}^{n-1} \quad \pi_1(\mathbb{S}^{n-1}) = 0, \quad n \ge 3$

Characterization of Affine spaces \mathbb{A}^n_k

Is \mathbb{A}_k^n the unique \mathbb{A}^1 -contractible smooth affine scheme over a field k?

A variety V is *exotic* if $V \cong k^d$ topologically, but $V \ncong \mathbb{A}^d_k$ algebraically.

- True for n = 0, 1 over all k; Affine'ness not required: [DMØ],
- True for n = 2 over char k = 0[Choudhury-Roy]; Affine'ness not required and extension to perfect fields: [DMØ], Is there a non-trivial k-form of \mathbb{A}^2 that is

Relative \mathbb{A}^1 -contractibility over arbitrary base schemes, [DMØ]

Are \mathbb{A}^1 -contractible smooth schemes necessarily ZLT \mathbb{A}^n -bundles?

Let $f : \mathcal{X} \to S$ be a smooth scheme of finite type of relative dimension d over a Noetherian scheme S of finite Krull dimension. Then:

Relative dimension d = 0 (*S* arbitrary)

★ \mathcal{X} is \mathbb{A}^1 -contractible if and only if f is an isomorphism, Separated étale *S*-schemes are \mathbb{A}^1 -rigid!

• $\pi_1^{\infty}(\mathcal{W}) \neq 0$ as $\mathcal{W} \setminus C$ necessarily contains a (solid) torus for any compact $C \subset \mathcal{W}$.

Can we characterize \mathbb{A}^n_k among smooth "contractible" schemes?

What is Motivic Homotopy Theory?

- A homotopy theory for smooth separated S-schemes of finite type Sm_S with $I = \mathbb{A}^1$.
- Established by Fabien Morel and Vladimir Voevodsky [MV99].
- A motivic S-space ${\mathcal X}$ is a simplicial presheaf that satisfies
- a. Descent via L_{Nis} : inverting all Nisnevich coverings $\check{C}(U_{\bullet}) \to X$,
- b. \mathbb{A}^1 -localization via $L_{\mathbb{A}^1}$: inverting all maps $\{\mathrm{pr}_1: X \times \mathbb{A}^1 \to X : X \in Sm_S\}$
- The category of (unstable) motivic S-spaces is

\mathbb{A}^1 -contractible?

- False for n ≥ 3 Generalized Koras-Russell varieties [Dubouloz-Ghosh] and Asanuma varieties,
- False for $n \ge 4$ arbitrary family of non-isomorphic exotic quasi-affines [Asok-Doran].

For d = 3, does \mathbb{A}^1 -contractibility imply affine?

Hunt down: Exotic varieties

Koras-Russell threefolds over char $\boldsymbol{k}=\boldsymbol{0}$

 $\mathcal{K} := \{X^m Z = X + Y^r + T^s\} \subseteq \mathbb{A}_k^4$

where $m, r, s \ge 2$ integers with r, s coprime.

 $\star \mathcal{K} \cong_{top} \mathbb{R}^6 \text{ [Dimca, Ramanujam]},$

★ $\mathcal{K} \cong_{alg} \mathbb{A}^3_{\mathbb{C}}$ [Makar Limanov],

 $ML(\bigstar) := \bigcap_{\partial \in LND(\bigstar)} Ker \ \partial$

Relative dimension d = 1 (S normal)

 $\bigstar \mathcal{X} \text{ is } \mathbb{A}^1 \text{-contractible if and only if } f \text{ is a ZLT} \\ \mathbb{A}^1 \text{-bundle,} \\ \mathcal{X} \cong \mathbb{A}^1_S \iff \Omega_f \cong \mathcal{O}_{\mathcal{X}}$

Relative dimension d = 2 (S Dedekind with char $\kappa_S = 0$)

- ★ For *f* affine: \mathcal{X} is \mathbb{A}^1 -contractible if and only if *f* is a ZLT \mathbb{A}^2 -bundle For *S* affine, $\mathcal{X} \cong \mathbb{A}_S^2 \iff \omega_f \cong \mathcal{O}_{\mathcal{X}}$
 - False if char $\kappa_S > 0$: e.g., Asanuma-Gupta varieties!
- ★ Motivic homotopy does not detect ZLT \mathbb{A}^d -bundles for $d \geq 3!$

$\mathbb{A}^1\text{-}\mathsf{contractibility}$ is a pointwise phenomenon - both stably and unstably!

For $X \in Spc_S$ with the inclusion $i : \{s\} \hookrightarrow S, X$ is \mathbb{A}^1 -contractible in $Spc_S \iff i_s^*(X)$ is

then

 $Spc_S := L_{\mathbb{A}^1}(L_{Nis}(Pshv(Sm_S)))$

Any scheme $X \in Sm_S$ defines a motivic space via the Yoneda embedding $\mathcal{X}(-) := Hom_{Sm_S}(-, X) : Sm_S^{op} \to sSet$

$\mathbb{A}^1\text{-}{\bf contractibles},$ Fiber spaces and ZLT bundles

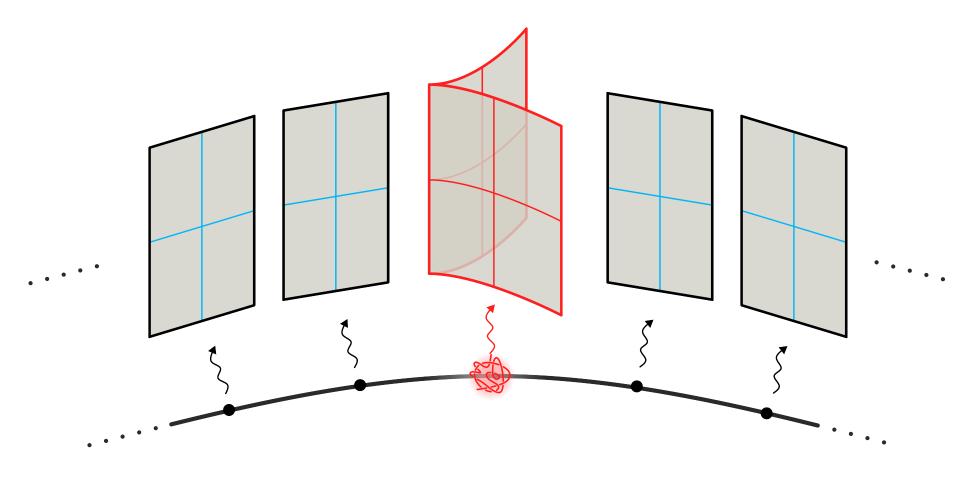
- An S-scheme $f: X \to S$ is \mathbb{A}^1 -contractible if f is an \mathbb{A}^1 -weak equivalence in Spc_S .
- An S-scheme $p: X \to S$ is an \mathbb{A}^n -fiber space if f is smooth of finite presentation with all its fibers

 $p^{-1}(s)\cong \mathbb{A}^n_{\kappa(s)}$

for all $s \in S$.

• p defines a Zariski locally trivial \mathbb{A}^n -bundle if $\forall s \in S, \exists$ an Zariski open $U \subset S$ such that $p^{-1}(U) := U \times_S X \xrightarrow{\cong} U \times \mathbb{A}^n$

- $ML(\mathbb{A}^3_{\mathbb{C}}) = \mathbb{C}, \quad ML(\mathcal{K}) = \mathbb{C}[X]$
- * \mathcal{K} is \mathbb{A}^1 -contractible ([HKØ16], [DF18]). Using étale locally trivial \mathbb{A}^1 -bundles and \mathbb{A}^1 -Brouwer degree valued in Milnor-Witt K-theory K_*^{MW} ,
- * The map $\operatorname{pr}_x : \mathcal{K} \to \mathbb{A}^1_x$ has all closed fibres $\cong \mathbb{A}^2$ but the generic fiber $\cong \mathbb{A}^1 \times Cusp$; So, pr_x is not an \mathbb{A}^2 -fiber space whence cannot be a ZLT \mathbb{A}^2 -bundle.



Is \mathcal{K} cancellative? i.e., is $\mathcal{K} \times \mathbb{A}^1_k \cong \mathbb{A}^4_k$?

Asanuma-Gupta varieties over char F = p > 0

 \mathbb{A}^1 -contractible in $Spc_{\kappa(s)}$.

Some major goals of the upcoming article [Mad].

Koras-Russell over Arithmetic Schemes

The smooth affine variety $\mathcal{K} \to Spec \mathbb{Z}$ is \mathbb{A}^1 -contractible in $\mathcal{H}(\mathbb{Z})$.

- Extend to (Dedekind) schemes with perfect residue fields,
- Provides a distinct family of exotic threefolds in mixed characteristics,
- Generalized deformed Koras-Russell bundles over (certain) Dedekind schemes,
- Potential obstruction to the ZCP in the relative setting.

Generalized Motivic Spheres

Over a (reasonable) scheme S, when does

 $X \simeq_{\mathbb{A}^1} \mathbb{A}^n_S \setminus \{0\} \implies X \cong_S \mathbb{A}^n_S \setminus \{0\}?$

References

as U-schemes.

Examples: Affine *n*-spaces, Cusp $\{x^p = y^q\}$ with (p,q) = 1, Vector bundles and ZLT bundles with \mathbb{A}^1 -contractible fibers.

Zariski Cancellation Problem (ZCP) Over a field k, does $X \times \mathbb{A}^1_k \cong \mathbb{A}^{n+1}_k$ imply $X \cong \mathbb{A}^n_k$?

- True up to $n \leq 2$ for all k
- False for $n \ge 3$ over char k > 0
- Open for $n \ge 3$ over char k = 0

$$\mathcal{A} := \{ X^m \ Z = f(Y, T) \} \subseteq \mathbb{A}_F^4$$

where $m, e, s \ge 2$ integers and $f(Y, T) := T + Y^{p^e} + T^{sp}$ such that $sp \nmid p^e$ and $p^e \nmid sp$ is the non-trivial line.

- $\mathcal{A} \ncong \mathbb{A}_F^3$ but $\mathcal{A} \times \mathbb{A}_F^1 \cong \mathbb{A}_F^4$ (non cancellative!)
- $\operatorname{pr}_x : \mathcal{A} \to \mathbb{A}^1_F$ is an \mathbb{A}^2 -fiber space but not a Zariski locally trivial \mathbb{A}^2 -bundle [Asa87]
- pr_x is an \mathbb{A}^1 -weak equivalence in $Spc_{\mathbb{A}^1_F}$ (\mathbb{A}^1 -contractible!).

- [Asa87] T. Asanuma. "Polynomial fibre rings of algebras over Noetherian rings". In: *Inventiones mathematicae* 87.1 (1987), pp. 101–127.
- [MV99] F. Morel and V. Voevodsky. "A¹-homotopy theory of schemes". In: *Publications Mathématiques de l'IHÉS* 90 (1999), pp. 45–143.
- [HKØ16] M. Hoyois, A. Krishna, and P. A. Østvær. "A¹-contractibility of Koras-Russell threefolds". In: *Algebr. Geom.* 3 (2016).
- [DF18] A. Dubouloz and J. Fasel. "Families of A¹-contractible affine threefolds". In: *Algebr. Geom.* 5 (2018).
- [DMØ] A. Dubouloz, K.K. Madhavan Vijayalakshmi, and P.A. Østvær. A¹-contractibility of Smooth schemes over Dedekind schemes (in preparation).
- [Mad] K.K. Madhavan Vijayalakshmi. Exotic family of affine varieties and motivic spheres over integers (in preparation).

krishmv.github.io

Mentored by Paul Arne ØSTVÆR in Italy & Adrien DUBOULOZ in France

krishna(dot)madhavan(at)unimi(dot)it