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Motivic setup

To compute enumerative invariants of algebraic varieties, one often use the intersection theory. But most of the time we are restricted to working over an algebraically closed field. To put the
known real invariants in the machinery, one can change the Chow ring of a variety X (as a cohomology ring Hn(X,KM

n )) by a Chow-Witt ring (Hn(X,KMW
n (L)) = C̃H

n
(X,L)). All the

formal definitions live more generally in the stable (∞−)category of motivic spectra with six functor formalism. SH (X) contains the spectra of representable A1−invariant (co)homology
theories over X.

A drawing in degree 4

A degree 4 del Pezzo surface can be seen as the blow-up of P2 in 5 points in general position.
The exceptional lines are given by the drawing :

If the blow-up is over R and two points are actually complex conjugated, we don’t always
have 16 lines but can have only 8 (or even less) ! Actually, there was no known real count
but one can find 8 ⟨1⟩ + 8 ⟨−1⟩ ∈ GW (R) for the degree 4 del Pezzo surfaces.

The 27 complex / 3 real lines on the cubic
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{lines of V (f3)} ⊆ G(3, 1) ///o/o/o/o/o/o/o/o/o/o/o Z(σf3) ⊆ G(3, 1)

Over C, the class of Z(σf3) in CH4 (G(3, 1)) is independent of the choice of the global section
and [Z(σf3)] = c4(Sym3 (Q)). Its degree is 27.
Over R, this is false but using the more general Euler class and some motivic machinery,
we recover :

deg e(Sym3 (Q)) = 15 ⟨1⟩ + 12 ⟨−1⟩ ∈ GW (R).

Milnor-Witt K-theory

The main difference comes from the addition of a new element η in degree −1 in the original
Milnor K-theory. This change implies :
1. we now have quadratic data : KMW

0 (k) ≃ GW (k) the group of quadratic forms over k,
2. we have to consider twists by invertible sheaves (i.e. orientations) to have the degree

function C̃H
dimX

(X,ωX) → GW (k).

These changes and the fact that the degree takes into account traces from κx → k give
enough data to have enumerative invariants over non algebraically-closed fields.

A motivic Euler class

The main class used is the Euler class defined for a rank r vector bundle E → X as the
composition :
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cr(E) ∈ CHr (X) e(E) ∈ C̃H
r
(X, detE)

Oriented intersection

The computation of intersection products in the Chow-Witt groups, even on the Grass-
mannian, is quite complicated. There are some ways to compute the Euler degree directly,
or one can use the fiber product

C̃H
dimX

(X,L) //

��

CHdimX (X)

��

WdimX(X,L) //ChdimX (X)

to recover the Chow-Witt data from classical intersection in Chow groups and computation
over the Witt groups, which is easier to do.

Reasons to work on Grassmannians

Expressing the problem over a Grassmannian is interesting in the classical setup because with the splitting principle and Schubert calculus, one can easily compute the Chern classes of vector
bundles. However, the splitting principle is not true in (Chow-)Witt rings. To go around this problem we can use some equivariant Witt cohomology and then do the Witt-valued Schubert
calculus.

What about orientations

The computations over the Grassmannians are mostly of Euler classes of vector bundles.
In Chow(-Witt) groups, we have to consider the orientability. That is the class of detE
in Pic (G) /2 and it has to be the same as ωG ≃ OG(−n). There is a problem for the
degree 4 example : det(Sym2 (Q)  ⊕ Sym2 (Q)) ≃ O(6), but ωG ≃ OG(−5). To recover an
orientability, we can modify the vector bundle with tensor products by O(l). However, the
geometrical meaning of the what we are counting is then harder to understand.

Equivariant cohomology

To recover an expression of Sym3 (Q) depending on e(Q) without the splitting principle can
be achieved using the N−equivariant Witt cohomology, with N the normalization of the
torus

(
t 0
0 t−1

)
in SL2. The equivariant Euler class lives then in the equivariant cohomology.

But rk(Sym3 (Q)) = dim(G), and the degree of eN(Sym3 (Q)) lives in W0(BN) and this
is a W (k)−module ! The trace of eN(Sym3 (Q)) in W(k) corresponds to the usual degree.
Using the presentation of the W(Gr(4, 2)) as a W(k)−algebra generated by e(Q) and e(S),
one can find :

e(Sym3 (Q)) = 3e(Q)2 ∈ W4(Gr(4, 2)).

The GW−degree

With the classical intersection result deg(c4(Sym3 (Q))) = 27 and the Witt result deg(e(Sym3 (Q))) = 3 ⟨1⟩ ∈ W(R), we recover the claimed result by adding 12(⟨1⟩+ ⟨−1⟩) to have a degree
27 quadratic form in GW (R).


