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1 Backgrounds



Setting

k = k : field of characteristic O

Completion of the affine space A"
.= ProJ. (connected) variety containing A" as a dense open subscheme

For completion X of A", B = X\ A" is called the boundary divisor

e.g. P" 1s a smooth completion of A”,

B = P"\A" Is a hyperplane section

Aim: classify sm. proj. completions X of A” and Its boundary B



Khown results

. p(X) :=Picard rank of X
. n=1:(X,B) = (P!, pt)
. n=2,pX)=1:X,B) = (P?line)

. n=2, p(X)=2:X=Hirzebruch surface, (X, B) is classified [Mori7 3]

using birat. transform. preserving A?



Khown results

n=23,pX)=1:X=~P’ quadric @ c P* quintic del Pezzo 3-fold V., or
Mukal 3-fold of ¢ = 12. (X, B) is classified
[Peternell, Schneider, Prokhorov, Mukal, Furushima, etc.]

n=3, pX)=2:X,B)is NOT classified, few examples <—Today
[Muller-Stach, Kishimoto, N., Huang-Montero, etc.]



2 Results of [DKN]



MMP strategy

. In what follows, we suppose n = 3.

. How to treat completion X of A° w/ boundary B in the case where p(X) >2 ?
- run an MMP ¢: X -» X, --> --- > X . and classity (X_. , ¢.B) Instead

. Disadvantage : X . has at worst Q-factorial terminal singularities

¢ does not preserve X\B = A’ in general

. Advantage : X_.. has a Mori fiber space structure

. Question : How many Mori fiber spaces with Q-fact. term. sing. contain A°7



Del Pezzo fibrations

Del Pezzo fibration (in this talk) := proj. 3-fold X with Q-fact. term.
sing. endowed with an extremal contraction »: X - C to a curve

A general z-fiber S is a sm. del Pezzo surface (< -K; is ample)

d - degree of del Pezzo fibration := (-K,)* € {1,2,---,9}

(S = P! x P! or the blow-up of P? at (9 — d) points in general position)

. S # Bl [P° #Bl,, P> (. relative Picard rank =1) In particular, d # 7.



Theorem A

Question A: which smooth del Pezzo surface can appear as a closed
fiber of a del Pezzo fibration z: X - C ( @ P") whose total space is a

completion of A°?

. Theorem A [DKN24]
et S : sm. del Pezzo surface of degree 4, # Bl,,P*, # Bl,, [P

Then 3z: X - P! : del Pezzo fibration of degree 4,
1B, n-fiber, 3B, : prime divisor on X

s.t - §isisomorphic to some z-fiber -+ X\(B,UB,) =~ A’
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Horizontal divisor

In the situation of Theorem A,

z: X —» P! : del Pezzo fibration of degree 4,
B, : n-fiber, B, : prime divisor on X

st - X\(B;UB, = A’

the induced morphism z: B, — P! is surjective

Pic(A”) = 0 & T'(AY)* = k* = {B,, B,} is a Z-basis of CI(X)

It d <6, then {B;, — Ky} Is also a Z-basis = B;, ~pi — Ky

= 7 . plane cubic curve fibration

Question B: when d < 6, which plane cubic curve can appear as a

closed #fiber?

11




Theorem B

Question B : when d < 6, which plane cubic curve can appear as a
closed #-fiber?

. Theorem B [DKN24]
Let C : Integral plane cubic curve, 1 <d <6

Then 3z: X - P! : del Pezzo fibration of degree 4,
1B, . z-fiber, 3B, : prime divisor on X

s.t - Cis isomorphic to some z-fiber - X\(B;UB,) =~ A’
. Main topic of this talk = Theorem B In the case where d =6
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§3 General case: d # 6



General framework

How to get completion of A’ into del Pezzo fibrations?

Step 1 : Find suitable pencils of del Pezzo surfaces on known

completions of A’ into Q-Fano 3-folds

Step 2 . Take appropriate resolution of indeterminacy of pencils

Step 3 : Run relative MMPs
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General framework

oStep 1 : Find suitable pencils of del Pezzo surfaces on known

completions of A’ into @-Fano 3-folds

Definition: An H-special del Pezzo pencil is a triple (X, H,y) s.1.

X : proj. 3-fold of divisor class rank one with (Q-fact.) term. sing.
H : an effective prime Well divisor on X s.t. CI(X) = Z[H]

w: X > P! pencil of (Cartier) divisors satisfying the following:
(a) w has a member which is a sm. del Pezzo surface,
(b) 3m > 1 s.t. mH IS a member of vy,

(c) The base scheme Bs(y) Is Irred., (d) If m =1, then Bs(y) IS reduced.
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General framework

Step 2 : Take appropriate resolution of indeterminacy of pencils

Definition: the graph of a pencil of divisors w: X --» P! is the scheme

theoretic closure I' &« X x P! of the restriction of y to its domain of
definition. The graph resolution is the induced morphism y: I' = X.

E- := the exceptional locus of y

Definition: a thrifty resolution of a pencil of divisors y: X --» P! on a

normal proj. var. X Is a resolution z: X’ —» X s.t. the induced morphism
c: X' — I' Is a Q-factorial terminalization of the normalization of T.
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General framework
Step 3 : Run relative MMPs

Theorem C [DKN24]
Let (X, H,y) : H-speclal del Pezzo pencil s.t. mH corresp. to y*(oo)

Suppose that m =1 or that m > 2 and X\H I1s smooth.

Then Vvz: Y - X : thrifty resolution of v, V¢: Y --> Y : MMP/P!,

the output is a del Pezzo fibration #: ¥ - P! s.t. Y is a completion
of X\H with boundary divisor B = B, U B; = ¢.0; 'Ep U @67 (i 'H)),
where ¢: Y — I' Is the Induced morphism.

Moreover, ¢ - t~! induces (y*(c), (Bs(y)),.q) — (#*(c), B, N #*(c)) (Vc € P'\{oo})
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Proof of Theorems A and B (d # 6 case)

To prove Theorem A (resp. Theorem B), It suffices to show:

VS : sm. del Pezzo surface (resp. VC : Int. plane cubic curve),
JH-speclal del Pezzo pencil (X, H,y) S.t.
- S is a member of y - X\H = A’

(resp. a sm. dP ~surf. is a member of y & (Bs(y)) .4 = C)

Theorem A Theorem B
s : sm. dP surf. of deg=d, # Bl,,[P? # Bl,,P?||C :integral plane cubic curve, 1 <d <6

=3r: X - P! : dPfib’n = J7z: X —» P! : dPAfib'n
Ele . r-Tiber, EIBf . n-fiber,
3B, : prime divisor on X 3B, : prime divisor on X

st - S some z-fiber + X\(B,UB,) = A’ st - Cx~ some z-fiber - X\(B;uB, = A’




Proof of Theorems A and B (d # 6 case)

S : sm. del Pezzo surface of d # 6,7

<S5 c X=P(1,1,2,3) : sextic hypersurface (d=1)
S c X =P(1,1,1,2) : quartic hypersurface (d=2)
S c X =P : cubic surface (d =3)
ScX=0QcP*: (2,2)-complete intersection (d = 4)
S c X = Vs c P%: hyperplane section (d = 5)
S ¢ X = P3 : quadric surface (d = 8)
ScX=P:plane (d=9)

JH € |0,(1)| s.t. X\H=A> -y :=pencil gen’d by S and mult. of H
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Proof of Theorems A and B (d = 5 case)

Sm. del Pezzo surface of d =5 I1s unique up to isom.

V. . quintic del Pezzo 3-fold Vi, p(V:) =1 (unique up to isom.)

. VHe |0y(1)| Is a del Pezzo surface of d =5
0 — H(Vs,0y) = H(Vs5, 0y, (1)) = H(H, Oy(—Kp)) — 0 (exact)

[Peternell-Schneider, Furushima-Nakayama] 3!H°, 3!1H® € |0, (1)| up to

Aut(Vs)-action s.t. VA\HY > V.\H*® ~ A%, H is normal, H® is non-normal
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Proof of Theorems A and B (d = 5 case)

Lemma: (1) VC : integral plane cubic curve, 3D c H? st. C~D

reg

(2) For such D, 35 € |6, (1)| : smooth member s.t. H'nS =D

. Take y: X =V, - P! s.t. y*(0) = § and y*(c0) = H’

— (X, H,w) : H'-special del Pezzo pencil s.t. Bs(w) =D = C

By Theorem C, we obtain a del Pezzo fibration #: ¥ - P! s.t.
* Y\(B;UB)) = Vs\H® = A’

* (@710),7(0) =77(0) |5 ) = (™ (0), Bs(y)) = (S, D)
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34 Remalning case:. d = 6



Difficulty

We do not know an example of an H-special del Pezzo pencil (X, H, y)

s.t. w has a member which is a sm. del Pezzo surface of d =6

e.qg. del Pezzo variety of dim=3, d = 6 has divisor class rank > 2

Definition: An H-special del Pezzo pencil is a triple (X, H,y) s.1.

X : proj. 3-fold of divisor class rank one with (Q-fact.) term. sing---.
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Proof of Theorem A (d = 6 case)

Sm. del Pezzo surface of d =6 I1s unique up to isom.

E.g. ([Prokhorov10]).
[ - the non-normal locus of H* € |0y (1)|, which Is a line

B Cc H® C V. : quartic rational curve

f: Y= Vs the blow-up along B with the exceptional divisor E;

Y c Y : the strict transform of [

Then - —K, : nef & big (i.e. Y is weak Fano)

- Y Is the unique (—K,)-trivial curve

24



Proof of Theorem A (d = 6 case)

E.g. ([Prokhorov16]).
- 3 diagram Y YT s.t. y:AtiyahflopofY

f .
/ \ 7z : del Pezzo fib’'n of d = 6

Vs Pl
A = VA\H® = Y\((H®)y U Ey) = Y"\((H®)y+ U (Ep)y+) = Y+\(Bf U B))

- general fibers of z: B, —» P! is nodal.

Remark: Replacing H® as HY, we obtain another completion of A° s.t.

general fibers of z: B, —» P! is cuspidal.
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Proof of Theorem B (d = 6 case)

. We are reduced to proving:

. Theorem B’
Let C : smooth plane cubic curve

Then 3z: X - P! : del Pezzo fibration of degree d = 6,
1B, n-fiber, 3B, : prime divisor on X

s.t - Cis isomorphic to some z-fiber - X\(B,u B,) = A’
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C : smooth plane cubic curve
z: X —» P! : del Pezzo fib’n of degree d = 6,

Sa I"kiSOV Iink B, : =-fiber, 3B, : prime divisor on X

In the situation of Theorem B, s.t + C=some z-fiber « X\(B;uB)) = A’

suppose that X is smooth.

[Fukuokal8]: Vs, : z-section, 3diagram s.t. / ’

. blow-up along s, / \
g S, g 50 0 D
y . the flop/P! (or id,), q¢ iﬂ
f: blow-up along a sm. g-trisection (say 7) p1 Pl

g . del Pezzo fib'n of degree 8

[Fukuokal 7]: dopposite construction iIf =K, : (g < f)-nef & (g f)-big
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C : smooth plane cubic curve

z: X —» P! : del Pezzo fib’n of degree d = 6,
B, : =-fiber, 3B, : prime divisor on X

Sarkisov link

g: O — P! : del Pezzo fib’n of degree 8

s.t - C =~ some 7-fiber * X\(B,uUB,) = A’

Suppose that Q Is smooth.

/Z
[D'Souza838]: Vs : g-section, ddiagram s.t. % K
P 9,

y - blow-up along s,

¢ . blow-up along a sm. p-bisection (say B) P\L qJ/
1 1

g : del Pezzo fib’n of degree 9 (=P*-bundle)

Jopposite construction (—K, I1s always (p - p)-ample)
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C : smooth plane cubic curve

z: X —» P! : del Pezzo fib’n of degree d = 6,
B, : =-fiber, 3B, : prime divisor on X

Sarkisov link

In aadition, assume that s.t « C = some z-fiber - X\(B;UB) = A’

mUItSOBh — mU.ltS(Bh)Q — 1

7 V <X
SN ~
Then strict transform of B, Is
. _ £ Q X
always linearly equivalent to pi dPo-fib'n . ¢ APs-fib'n dPe}_ﬁb,niw
—K over P! Pl Pl Pl

Both B : sm. p-bisection and A := T : p-trisection are contained In (B,),

p: (B), — P! satisfies: Vx € P!, p*(x) : smooth = p*(x) =~ 7*(x)
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Observation ol p \QQ/

pJ/dPg—ﬁb’n Q\Ldpg—ﬁb7n

Let p: P - P! : del Pezzo fib’n of degree 9, P! P!

S c P : eff. divisor ~p—K,, A C S : p-trisection, B C S : sm. p-bisection.
Suppose 3Idiagram ( x ) and define B, := S, and z: B, — P!
Then p: § — P! satisfies: Vx € P!, p*(x) : smooth = p*(x) = 7*(x)

To prove Theorem B’, it suffices to find plenty of (P, S,A,B, 0 € P') s.t.

Jdiagram (% ) and X is a completion of A° w/ boundary B, U 7~ ()

Remark: ( x ) does not preserve X\(B, U 7~ !(0))
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§5 Construction



Theorem D [DKN24] (=Main Theorem)

p=rpr;: P!xP? > P ([xy: x1,[2: 21 : 2]) : coordinates of P! x P

For @ = (a3, ay, o, a0) € k*, take S5, A, B- c P! x P? as follows.

— {ZQBXO T (Zg T Zz(le T 3212 T C¥4Z(% T Al T 0572022)))61 — O} (1,3)‘d|V

A; ={z; =0} U S; . p-trisection
B; := {7y =0,2;xy + (z7 + a3212)x;, = 0} C {zo =0} U S; . p-bisection
. Y o X s YL
Then (1) 3diagram (x) | _ 313/ \ / N
Bl(a)g

x P? X&

\LdPg fib’n l/dPg fib’n dP6—ﬁb’nl/7T

P! P! P!
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Ty /Blj)jy\
Theorem D [DKN24] o e

Pl IP)l Pl

p=rpr;: P!xP? > P ([xy: x1,[2: 21 : 2]) : coordinates of P! x P

For @ = (a3, ay, o, a0) € k*, take S5, A, B- c P! x P? as follows.

— {ZZBXO T (Zg T Zz(le T 3212 T C¥4Z(% T Al T 0572022)))61 — O} (1,3)‘d|V
Az ={z1=0} U §; . p-trisection

B; := {7y = 0,25xy + (zf + 23212)x; =0} C {7, =0} U S; . p-bisection

Then (1) 3diagram ( %)
(2) X is a completion of A w/ boundary B, ;U B = (S;)x. U 711 : 0])
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Theorem D = Theorem B’

. p:S— P!:induced morphism

@ =(0,0,0,0) = S; = {z3x% + (20 + 2z5)x; = 0}

=>p*([a : 1]) is a smooth ell. curve w/ j =0 (Va € k)

a =(0,0,0,1) = \PRC {ngo T (Zg 1 22(212 + 293p))x; = 0}

1728 - 4
4 + 27a?

(Vx € k\{ £ (2y/-3)/9})

= p*(la : 1]) Is @ smooth ell. curve w/ j =

Vx € P!, p*(x) : smooth = p*(x) = 7*(x)
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1¢:B21 & AIY .......... -V +\
Proof of Theorem D (%) ﬁ o

. We omit subscript o

Properties:
Sing S ={([1:0],[0:1:0]},A=B = pl

Sn{z, =0} ={z =2 = 0}: p-section,
SN{zg=0} =1{z=2 =0} UB,

P\({z =0} U {x; =0}) = A’

S S\({z, = 0} U {x; = 0}) @ A% linearizable

D A\({z, =0} U {x;, =0}) = Al, B\({z, =0} U {x;, = 0}) =~ Al

35




| @:B;B 7 \w AZ@X> Y+XX
Proof of Theorem D S A i

¢: Z — P! x P?* blow-up along B
(Fano 3-fold of No.21 in [Mori-Mukai81, Table 3])

. E, . p-excep. divisor
| 9*Op1p2(2,2) — E, | defines y: Z — Q : birational extremal contraction

. E, = strict transform of {z, =0} In Z.
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Proof of Theorem D SRl \'/

0: weak Fano 3-fold of type (2.3.2) In [Takeuch|22_Theorem 2.3]
endowed with a dPg-fib’n ¢g: 0 — P!

. s=w(E)) : g-section & the unique (-K,)-trivial curve
10,(1): Cartier div. s.t =K, ~ 0,(2)
0 is embedded into F(1,1,1,0) := Ppi(Op(1)®° @ Opi) by |6,(1)]

P! x P? - F1,1,1,0) is defined by | Opip(1,2) @ 5]
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190:]3217 : f=Blag X
Proof of Theorem D Rl n e

Pl Pl Pl

Let Sy := ¢~ '([1:0])

S,, (resp. H,, H,, T): the strict transform of S, (resp.{z, =0}, {z, =0}, A) In O

Jdcoordinates ([x, : x(1, [wy : wy : w, - wi]) Of F(1,1,1,0) S.1.

0 = {wzzx() + xl(wl2 + ayww,) — wowy = 0}

S, =0nN {xl(wg + wy(oaywy + agw + azwy)) + wow; = 0} ~ 0p(2) = 5
H =0n{w =0} (fori=1,2) ~ 0n(1) = S;
T =S, N H N {w:+x(wowyxy + aywows + a;wyw;) = 0}: sm. g-trisection

s = {w, =w; =w, =0} g-section
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9021317 " g X
(% ) [Pt x P2 o T X
PrOOf Of Th eO rem D PidPg-ﬁb’n q\LdPg—ﬁb’n dP6—ﬁb’n\L7r
P! Pt P!
Properties: S, n H, = s u T (schematically)
S, N Hy = 4s+(curves in S
Q"= Q\(HyUSp) (= {x'+ (w))> +azw —wowy =0} in AF, ) = ASL
v =0} = HNQ = {w =0} xA?
Wy =0; = SN O° = {(W))* + aywp + agw| + a; + wi = 0} = A?

=n=0i=HnNS)NE =TNnQ° (s CH,)
. Key lemma : 3coordinates [v,,v,,v;] of 0° =~ A’ s.1.
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190:]3217 : f=Blag X
Proof of Theorem D Rl n e

Pl P! Pl

. H.:smooth (i=1,2) and H nH,=sU (s := {w, =w, = wy; = 0}): twO g-section

conic bundle qly (resp. q\Hz) has the unique singular fiber, which is

reducible and over [0 : 1] (resp. [1 : 0]) 4| H‘ S

(@170 2 11) = {xp = wy = w, = 0} =

U{XO:W1:W3:O}:

(I, T)y =i fori=1.2

TnH2={([1:()],[1:O:O:O])}CSf Doil] D (.03
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1¢:]3217 Z& %;:wax
Proof of Theorem D R R A

. [ Y—> Q:blow-up along T

Property: —K, Is nef and big (i.e., Y Is weak Fano)
=Ky ~ 1S+ (S))y = V(—Ky)-negative curve c (§,)y

~ f*H| + 2f*S; + (H))y = V(=Ky)-negative curve C s,U (H))y = (H)y
(Spy N (Hy)y =syand (=Ky-sy) = (=K, -5) =0 = —K,: nef

(—Ky)’ =22 = —K, : big
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7 Vv XLy

() [P o
Proof of Theorem D A S A
P! P! P!

. By [Fukuokal 7], 3diagram Xy
w/ y : the flop/P!, z:dP.-fib’n, f g
g . blow-up along a section, say s, Q / \ X
E, = (H)y: 1}1 Iilw

. By = (5)x Bri=(5)x

. X\(B,UB) = Y"\((Sp)y+ U (Sp)y+ U (H)y+)

=" YI\((Sp)y+ U (Spy+ U (HDys U (Hy)y) + (Hy)y\((Spy+ U (Spy+ U (H))y+)
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TN e N
Proof of Theorem D S A i

IP)l

.y Is the the Atiyah flop of [ := (the strict transfirm of ,, In Y)
o Suppose r c Y is a flopping curve (= r 1s not f~exceptional )
—Ky ~f*H, + 275, + (H)y = 0 = (=Ky - )y = (H}, rg)p + (H)y - Ny

> ((Hyy - 1) Sor C(H)y
It r, 1s @ smooth q|H1-ﬂber, then (=Ky-r)y=(=Kp,rp)g—(T-1)y =1H4
f ro =1, then (=Ky-r)y=(—Kp,rp)g— (T-Dy =2-i .1ry=1
0 —> Ny(Hy)y —= NiY —> (Nizz,), V)i —= 0 - NjY & O(=1)%* > 1 w <>

| |
O0,(—1) 0,(—1) AV

43 Toi(J L[:01



Proof of Theorem D bl

2 Y
SO_BI/ &Q%BMQ x

q\l/dpg—ﬁb7n dP6—ﬁb’n

Pl

IP)l

.y 1s the the Atiyah flop of [ := (the strict transform of , in Y)

[C (H)yand I Cc (Hy)y: (" LnH,#@and TNH, CS;= [N (Hy)y # D)

VNS ye U Sy U (H Dy U (Hy)ys) = YN(S,)y U (Spy U (H)y U (Hy)y)

= (Blow-up of 0° = Q\(H,US;) along Tn Q°)
\(strict transform of (H,n Q°) U (S, N Q°) )

=~ A X (A . Key Lemma:

dcoordinates [v,v,,v3] Of O\(H, U S;)

(vy=0}=HnQ, {»,=0}=5,n0" {
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@]3172& fBZ ..... Xy g
Proof of Theorem D Rl ¢/ \¢

\ ) * (Hy)y+\(Sp)y+ IS Isom. to blow-up
Y H) v St (M) YIH) v S (Ha

of Al x P! at a point (=1ns;})

| AT\yoCB\
S

| N |

A < * S, N H, = 4s+(curves in S)

\} ) |

m H\ S HD. $ (Sh)Y+ M (HZ)Y+ — SY++ (CUI"VGS In(Sf)Y+)
' ,
0 \/\> ;:\ (’r"\ ° Hl N H2 = s U S’ — (HI)Y+ N (HZ)Y+ p— SY"‘ | ] S/Y"'
ﬂ)l o \I/ . (HZ)Y+\((S}Z)Y+ U (Sf)Y'I' W, (Hl)Y‘l‘) = Blt(Al % ”:Dl)\(SY+ S S,Y+) ~ AZ
©
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Proof of Theorem D

. X\(B, U By)

(%)

Z
90:]317
Pl x P?
p\LdPg—ﬁb’n

Pl

Q\LdPg—ﬁb’n
IP)l

“__ " Y+\((Sh)Y+ U (Sf)Y+ U (HI)Y+ U (Hz)y+) + (HZ)Y+\((Sh)Y+ U (Sf)Y+ U (HI)Y+)

S AZX(AI)*_I_Az ...@

{B), B/} : Z-Pbasis of Pic(X)=> A : UFD, & A* = k* -~

46

@




........... v+

Proof of Theorem D S A S

Pl Pl Pl

. D+ = 3Fre A st Al 2 kz, 2 e v] & A1) = k[x,yT] o B
[Miyanishi84, §2.4] = R :=Anklz,z'] = k[#] is a polynomial ring
. @ = Vv fiber of p: X\(B, U B;) = Spec(A) — Spec(R) = Al is affine plane

[Sathaye83, Bass-Connell-Wright77] = p’is trivial fibration

= X\(B,UB)) = A’
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SOZBIY (0
\ ABIAQ

( * ) Pl x P? Q X
TheOreI I | E p\LdPg—ﬁb’n q\LdPS-ﬁb’n dpP ﬁb’n\l/w
Pl IP)l Pl

Let p/: kKt N ke (a5, oy, a0) = (€73, €7y, €*ar)

2

. 4. (.3 4
pktNkT e (o, 0y, a0a) = (€7az, €°ay, €0, €"a)

FIX a) — (a39 a49 a69 a7) and E — (ﬁ39ﬁ49ﬁ69ﬁ7) S k45

Set 7, — (a?,a a49 a7) and E, — (ﬁ39 ﬁ49ﬁ7) S k45

Then (1) @' ~, f <> acD:Xai;Xﬁ.

N
R|
2

hy)
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1@]32172K A;gwx
Proof of Theorem E ] S A

Claim : s, c X is the unique (-Ky)-negative curve
' For a curve r C X,
8(—K, - T) — 24p,(T) — (—K,)’ — 32

. [Fukuokal 7]

F=SO=>(—KX-r)=

—_
Fy+ = l+ — (_KX . I") — (—Ky+ + (HI)Y"' y l+) — ((HI)Y"' y l+) > 0
Otherwise, (=K - r) = (=Ky+ + (H)y+ * ry+) = (= Ky - rye) = (=Ky - ry) > 0
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( * ) P! x P2
Proof of Theorem E ki
Pl
Suppose Id: X — X;
s, C X Is the unique (-K,)-negative curve
= (I)(Soﬁ) = S0
= @ induces isomorphisms Y7 — Yﬁi, Y; = Yz and Q; - 0;

In particular, Q. - Q; sends T, to T;

50




Proof of Theorem E SRl A S

Pl Pl

s C Q Is the unique (-Kj)-trivial curve

= 05 — Q5 sends s; 10 s;
= @ induces isomorphisms Z; > Z; and ¥: P' x P* 5 P' x P

In particular, ¥ sends 4; (resp. B;) to A; (resp. By)

;30 X ;XE — I¥ € Aut(P' x P?) s.t P(A,) = A; & ¥(B;) = B;

-

= a’'~,p
Proof of Theorem E (2) i1s similar.
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Mukai 3-fold of ¢ = 12 o

\LdP -fib’n dPg-fib’n \l/

Y contains two (—Ky)-trivial curves [ u s,
. NY=0(-1)® and N, Y = O, (—1)®*

W (.= the anti-canonical model of Y) is a Fano 3-fold
with two ODP
of div. class rank three

of Picard rank one (l.e. maximally non-factorial)
with (-Ky)® = (=Ky)° = 22 (i.e. Mukai 3-fold of genus 12)
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Mukai 3-fold of ¢ = 12 O

Pl Pl

[Mukal, Peternell]
= 34-dim’l family of smooth Mukai 3-folds of ¢ =12 > A’

E.g. ([Prokhorov10]). N

% x y . Atiyah flop of Y
7 . del Pezzo fib'’n of d =6

Vs Pl
Midpoint is Mukai 3-fold of ¢ = 12 with one ODP > A’

W = (Mukal 3-fold of g = 12 with two ODP) contains

YN((Sp)y U (Sp)y U (Hpy) = YI\((S)y+ U (Spy+ U (Hy U [T) = Al x (A%)*

Thank you for listening
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