Completion of the affine 3-space into sextic del Pezzo fibrations

Masaru Nagaoka,

Department of Mathematics, Gakushuin University

Date: March 4, 2024 @The 23rd Affine Algebraic Geometry Meeting

7

Contents

- This talk is based on j.w.w Adrien Dubouloz, Takashi Kishimoto (arXiv:2401.02857)
- §1 Backgrounds
- §2 Results of [DKN]
- §3 General case: $d \neq 6$
- §4 Remaining case : d = 6
- §5 Construction

§1 Backgrounds

Setting

- $k = \overline{k}$: field of characteristic 0
- Completion of the affine space \mathbb{A}^n := proj. (connected) variety containing \mathbb{A}^n as a dense open subscheme
- . For completion X of \mathbb{A}^n , $B = X \setminus \mathbb{A}^n$ is called the **boundary divisor**
- e.g. \mathbb{P}^n is a smooth completion of \mathbb{A}^n , $B = \mathbb{P}^n \backslash \mathbb{A}^n$ is a hyperplane section
- Aim: classify sm. proj. completions X of \mathbb{A}^n and its boundary B

Known results

- $\rho(X) := \text{Picard rank of } X$
- $n = 1: (X, B) \cong (\mathbb{P}^1, pt)$
- n = 2, $\rho(X) = 1$: $(X, B) \cong (\mathbb{P}^2, \text{line})$
- . $n=2, \, \rho(X)=2$: X= Hirzebruch surface, (X,B) is classified [Mori73] using birat. transform. preserving \mathbb{A}^2

Known results

- . n=3, $\rho(X)=1$: $X\cong\mathbb{P}^3$, quadric $\mathbb{Q}^3\subset\mathbb{P}^4$, quintic del Pezzo 3-fold V_5 , or Mukai 3-fold of g=12. (X,B) is classified [Peternell, Schneider, Prokhorov, Mukai, Furushima, etc.]
- . n = 3, $\rho(X) = 2$: (X, B) is NOT classified, few examples ←**Today** [Müller-Stach, Kishimoto, N., Huang-Montero, etc.]

§2 Results of [DKN]

MMP strategy

- In what follows, we suppose n = 3.
- How to treat completion X of \mathbb{A}^3 w/ boundary B in the case where $\rho(X) \geq 2$? \cdots run an MMP $\varphi \colon X \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_{\min}$ and classify (X_{\min}, φ_*B) instead
- Disadvantage : X_{\min} has at worst Q-factorial terminal singularities φ does not preserve $X \backslash B \cong \mathbb{A}^3$ in general
- Advantage: X_{\min} has a Mori fiber space structure
- Question: How many Mori fiber spaces with Q-fact. term. sing. contain \mathbb{A}^3 ?

Del Pezzo fibrations

- **Del Pezzo fibration** (in this talk) := proj. 3-fold X with \mathbb{Q} -fact. term. sing. endowed with an extremal contraction $\pi: X \to C$ to a curve
- . A general π -fiber S is a sm. **del Pezzo surface** ($\iff -K_S$ is ample)
- . d: degree of del Pezzo fibration := $(-K_S)^2 \in \{1,2,\cdots,9\}$ $(S = \mathbb{P}^1 \times \mathbb{P}^1 \text{ or the blow-up of } \mathbb{P}^2 \text{ at } (9-d) \text{ points in general position)}$
- $S \neq \mathrm{Bl}_{1pt}\mathbb{P}^2$, $\neq \mathrm{Bl}_{2pts}\mathbb{P}^2$. (: relative Picard rank =1) In particular, $d \neq 7$.

Theorem A

• Question A: which smooth del Pezzo surface can appear as a closed fiber of a del Pezzo fibration $\pi: X \to C$ ($\cong \mathbb{P}^1$) whose total space is a completion of \mathbb{A}^3 ?

Theorem A [DKN24]

Let S: sm. del Pezzo surface of degree d, $\neq B1_{1pt}\mathbb{P}^2$, $\neq B1_{2pts}\mathbb{P}^2$

Then $\exists \pi \colon X \to \mathbb{P}^1$: del Pezzo fibration of degree d,

 $\exists B_f : \pi$ -fiber, $\exists B_h : \text{prime divisor on } X$

s.t \cdot *S* is isomorphic to some π -fiber $\cdot X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

Horizontal divisor

 $\pi: X \to \mathbb{P}^1$: del Pezzo fibration of degree d,

 B_f : π -fiber, B_h : prime divisor on X

s.t $X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

- In the situation of Theorem A, $\square^{S,t} \cap A \cap B_h$ the induced morphism $\overline{\pi} \colon B_h \to \mathbb{P}^1$ is surjective
- . Pic(\mathbb{A}^3) = 0 & $\Gamma(\mathbb{A}^3)^* = k^* \Rightarrow \{B_f, B_h\}$ is a \mathbb{Z} -basis of Cl(X)
- . If $d \le 6$, then $\{B_f, -K_X\}$ is also a \mathbb{Z} -basis $\Rightarrow B_h \sim_{\mathbb{P}^1} -K_X$ $\Rightarrow \overline{\pi}$: plane cubic curve fibration
- Question B: when $d \le 6$, which plane cubic curve can appear as a closed π -fiber?

Theorem B

• Question B : when $d \le 6$, which plane cubic curve can appear as a closed π -fiber?

Theorem B [DKN24]

Let C: integral plane cubic curve, $1 \le d \le 6$

Then $\exists \pi \colon X \to \mathbb{P}^1$: del Pezzo fibration of degree d, $\exists B_f \colon \pi$ -fiber, $\exists B_h \colon$ prime divisor on X

s.t \cdot C is isomorphic to some π -fiber $\cdot X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

• Main topic of this talk = Theorem B in the case where d = 6

§3 General case: $d \neq 6$

How to get completion of A³ into del Pezzo fibrations?

Step 1 : Find suitable pencils of del Pezzo surfaces on known completions of \mathbb{A}^3 into \mathbb{Q} -Fano 3-folds

Step 2: Take appropriate resolution of indeterminacy of pencils

Step 3: Run relative MMPs

Step 1 : Find suitable pencils of del Pezzo surfaces on known completions of \mathbb{A}^3 into \mathbb{Q} -Fano 3-folds

- . Definition: An *H*-special del Pezzo pencil is a triple (X, H, ψ) s.t.
 - X: proj. 3-fold of divisor class rank one with (Q-fact.) term. sing.
 - H: an effective prime Weil divisor on X s.t. $Cl(X) = \mathbb{Z}[H]$
 - $\psi: X \dashrightarrow \mathbb{P}^1$: pencil of (Cartier) divisors satisfying the following:
 - (a) ψ has a member which is a sm. del Pezzo surface,
 - (b) $\exists m \geq 1$ s.t. mH is a member of ψ ,
 - (c) The base scheme $Bs(\psi)$ is irred., (d) If m=1, then $Bs(\psi)$ is reduced.

Step 2: Take appropriate resolution of indeterminacy of pencils

- . Definition: the graph of a pencil of divisors $\psi \colon X \to \mathbb{P}^1$ is the scheme theoretic closure $\Gamma \hookrightarrow X \times \mathbb{P}^1$ of the restriction of ψ to its domain of definition. The graph resolution is the induced morphism $\gamma \colon \Gamma \to X$. $E_{\Gamma} :=$ the exceptional locus of γ
- . Definition: **a thrifty resolution** of a pencil of divisors $\psi \colon X \dashrightarrow \mathbb{P}^1$ on a normal proj. var. X is a resolution $\tau \colon X' \to X$ s.t. the induced morphism $\sigma \colon X' \to \Gamma$ is a Q-factorial terminalization of the normalization of Γ .

Step 3: Run relative MMPs

Theorem C [DKN24]

Let (X, H, ψ) : H-special del Pezzo pencil s.t. mH corresp. to $\psi^*(\infty)$

Suppose that m = 1 or that $m \ge 2$ and $X \setminus H$ is smooth.

Then $\forall \tau \colon Y \to X$: thrifty resolution of ψ , $\forall \varphi \colon Y \to \tilde{Y} \colon \mathsf{MMP/P}^1$,

the output is a del Pezzo fibration $\tilde{\pi} \colon \tilde{Y} \to \mathbb{P}^1$ s.t. \tilde{Y} is a completion

of $X \setminus H$ with boundary divisor $B = B_h \cup B_f = \varphi_* \sigma_*^{-1} E_\Gamma \cup \varphi_* (\sigma^{-1} (\gamma_*^{-1} H))$,

where $\sigma: Y \to \Gamma$ is the induced morphism.

Moreover, $\varphi \circ \tau^{-1}$ induces $(\overline{\psi^*(c)}, (\mathrm{Bs}(\psi))_{\mathrm{red}}) \xrightarrow{\sim} (\tilde{\pi}^*(c), B_h \cap \tilde{\pi}^*(c))$ ($\forall c \in \mathbb{P}^1 \setminus \{\infty\}$)

Proof of Theorems A and B ($d \neq 6$ case)

- To prove Theorem A (resp. Theorem B), It suffices to show:
- $\forall S$: sm. del Pezzo surface (resp. $\forall C$: int. plane cubic curve), $\exists H$ -special del Pezzo pencil (X, H, ψ) s.t.
 - S is a member of ψ

 $\cdot X \setminus H \cong \mathbb{A}^3$

(resp. a sm. dP_d -surf. is a member of ψ & $(Bs(\psi))_{red} \cong C$)

Theorem A

S: sm. dP surf. of deg=d, \neq Bl_{1pt} \mathbb{P}^2 , \neq Bl_{2pts} \mathbb{P}^2

 $\Rightarrow \exists \pi \colon X \to \mathbb{P}^1 \colon dP_d$ -fib'n

 $\exists B_f : \pi\text{-fiber},$

 $\exists B_h$: prime divisor on X

s.t $S \cong \text{some } \pi\text{-fiber } X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

Theorem B

| C: integral plane cubic curve, $1 \le d \le 6$

 $\Rightarrow \exists \pi \colon X \to \mathbb{P}^1 \colon dP_d$ -fib'n $\exists B_f \colon \pi$ -fiber,

 $\exists B_h$: prime divisor on X

s.t \cdot $C \cong$ some $\overline{\pi}$ -fiber \cdot $X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

Proof of Theorems A and B ($d \neq 6$ case)

• S: sm. del Pezzo surface of $d \neq 6,7$

$$\Rightarrow \langle S \subset X = \mathbb{P}(1,1,2,3) : \text{ sextic hypersurface} \qquad (d=1)$$

$$S \subset X = \mathbb{P}(1,1,1,2) : \text{ quartic hypersurface} \qquad (d=2)$$

$$S \subset X = \mathbb{P}^3 : \text{ cubic surface} \qquad (d=3)$$

$$S \subset X = \mathbb{Q}^3 \subset \mathbb{P}^4 : (2,2) \text{-complete intersection} \qquad (d=4)$$

$$S \subset X = V_5 \subset \mathbb{P}^6 : \text{ hyperplane section} \qquad (d=5)$$

$$S \subset X = \mathbb{P}^3 : \text{ quadric surface} \qquad (d=8)$$

$$S \subset X = \mathbb{P}^3 : \text{ plane} \qquad (d=9)$$

. ∃ $H \in |\mathscr{O}_X(1)|$ s.t. $X \setminus H \cong \mathbb{A}^3$ · $\psi :=$ pencil gen'd by S and mult. of H

Proof of Theorems A and B (d = 5 case)

- Sm. del Pezzo surface of d = 5 is unique up to isom.
- . V_5 : quintic del Pezzo 3-fold V_5 , $\rho(V_5)=1$ (unique up to isom.)
- . $\forall H \in |\mathcal{O}_{V_5}(1)|$ is a del Pezzo surface of d=5
- . $0 \to H^0(V_5, \mathcal{O}_{V_5}) \to H^0(V_5, \mathcal{O}_{V_5}(1)) \to H^0(H, \mathcal{O}_H(-K_H)) \to 0$ (exact)
- . [Peternell-Schneider, Furushima-Nakayama] $\exists ! H^0$, $\exists ! H^\infty \in |\mathscr{O}_{V_5}(1)|$ up to $\operatorname{Aut}(V_5)$ -action s.t. $V_5 \backslash H^0 \cong V_5 \backslash H^\infty \cong \mathbb{A}^3$, H^0 is normal, H^∞ is non-normal

Proof of Theorems A and B (d = 5 case)

- . Lemma: (1) $\forall C$: integral plane cubic curve, $\exists D \subset H^0_{\text{reg}}$ s.t. $C \cong D$ (2) For such D, $\exists S \in |\mathscr{O}_{V_5}(1)|$: smooth member s.t. $H^0 \cap S = D$
- . Take $\psi \colon X = V_5 \dashrightarrow \mathbb{P}^1$ s.t. $\overline{\psi^*(0)} = S$ and $\overline{\psi^*(\infty)} = H^0$ $\to (X, H^0, \psi) \colon H^0$ -special del Pezzo pencil s.t. $\mathrm{Bs}(\psi) = D \cong C$
- By Theorem C, we obtain a del Pezzo fibration $\tilde{\pi} \colon \tilde{Y} \to \mathbb{P}^1$ s.t.
 - $\tilde{Y}\setminus (B_f \cup B_h) \cong V_5 \setminus H^0 \cong \mathbb{A}^3$
 - $(\tilde{\pi}^{-1}(0), \overline{\pi}^{-1}(0) = \tilde{\pi}^{-1}(0)|_{B_h}) \cong (\psi^{-1}(0), \operatorname{Bs}(\psi)) \cong (S, D) \square$

§4 Remaining case: d = 6

Difficulty

- . We do not know an example of an *H*-special del Pezzo pencil (X, H, ψ) s.t. ψ has a member which is a sm. del Pezzo surface of d = 6
- e.g. del Pezzo variety of dim=3, d=6 has divisor class rank ≥ 2

Definition: An H-special del Pezzo pencil is a triple (X, H, ψ) s.t.

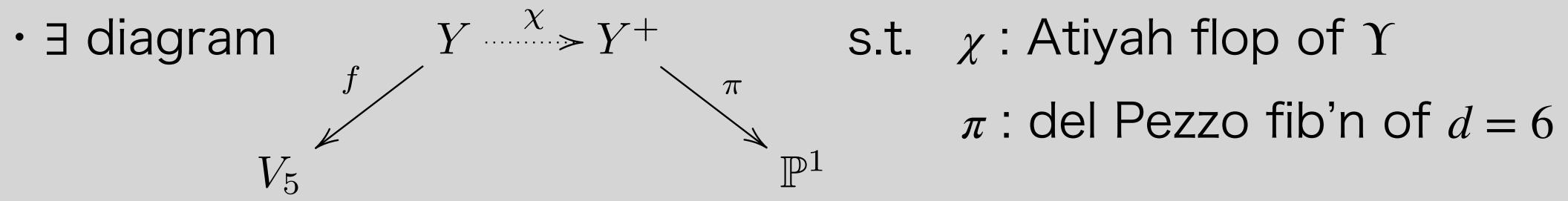
X: proj. 3-fold of <u>divisor class rank one</u> with (Q-fact.) term. sing…

Proof of Theorem A (d = 6 case)

- Sm. del Pezzo surface of d = 6 is unique up to isom.
- E.g. ([Prokhorov16]).
 - l: the non-normal locus of $H^{\infty} \in |\mathcal{O}_{V_5}(1)|$, which is a line
 - $B \subset H^{\infty} \subset V_5$: quartic rational curve
 - $f: Y \to V_5$: the blow-up along B with the exceptional divisor E_f
 - $\Upsilon \subset Y$: the strict transform of l
- . Then $-K_Y$: nef & big (i.e. Y is weak Fano)
 - Υ is the unique $(-K_Y)$ -trivial curve

Proof of Theorem A (d = 6 case)

• E.g. ([Prokhorov16]).



- $\cdot \mathbb{A}^3 \cong V_5 \backslash H^{\infty} \cong Y \backslash ((H^{\infty})_Y \cup E_f) \cong Y^+ \backslash ((H^{\infty})_{Y^+} \cup (E_f)_{Y^+}) \cong Y^+ \backslash (B_f \cup B_h)$
- general fibers of $\overline{\pi} \colon B_h \to \mathbb{P}^1$ is nodal.
- Remark: Replacing H^{∞} as H^0 , we obtain another completion of \mathbb{A}^3 s.t. general fibers of $\overline{\pi} \colon B_h \to \mathbb{P}^1$ is cuspidal.

Proof of Theorem B (d = 6 case)

We are reduced to proving:

Theorem B'

Let C: smooth plane cubic curve

Then $\exists \pi \colon X \to \mathbb{P}^1$: del Pezzo fibration of degree d=6, $\exists B_f \colon \pi$ -fiber, $\exists B_h$: prime divisor on X

s.t · *C* is isomorphic to some π -fiber · $X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

Sarkisov link

• In the situation of Theorem B', suppose that *X* is smooth.

. [Fukuoka 18]: $\forall s_0$: π -section, \exists diagram s.t.

g: blow-up along s_0 ,

 χ : the flop/ \mathbb{P}^1 (or $\mathrm{id}_{X'}$),

f: blow-up along a sm. q-trisection (say T) \mathbb{P}^1 _____

q : del Pezzo fib'n of degree 8

. [Fukuoka 17]: Bopposite construction if $-K_Y$: $(q \circ f)$ -nef & $(q \circ f)$ -big

C: smooth plane cubic curve $\pi\colon X\to \mathbb{P}^1$: del Pezzo fib'n of degree d=6, B_f : π -fiber, $\exists B_h$: prime divisor on X s.t • $C\cong \operatorname{some} \bar{\pi}$ -fiber • $X\setminus (B_f\cup B_h)\cong \mathbb{A}^3$

 $Y \leftarrow X'$

Sarkisov link

- $q: Q \to \mathbb{P}^1$: del Pezzo fib'n of degree 8 Suppose that Q is smooth.
- . [D'Souza88]: $\forall s$: q-section, \exists diagram s.t.

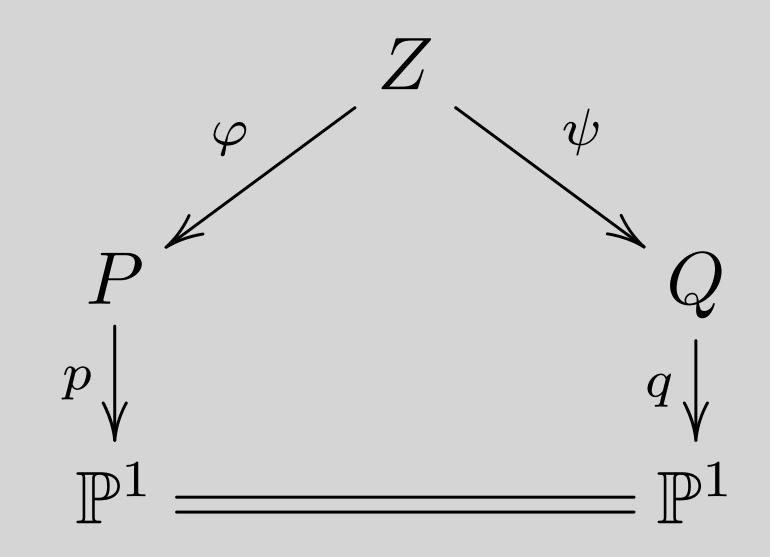
 ψ : blow-up along s,

 φ : blow-up along a sm. p-bisection (say B)

q: del Pezzo fib'n of degree 9 (= \mathbb{P}^2 -bundle)

C: smooth plane cubic curve $\pi\colon X\to \mathbb{P}^1$: del Pezzo fib'n of degree d=6, $B_f\colon \pi ext{-fiber},\ \exists B_h$: prime divisor on X

s.t • $C \cong \text{some } \overline{\pi}\text{-fiber } \bullet X \setminus (B_f \cup B_h) \cong \mathbb{A}^3$

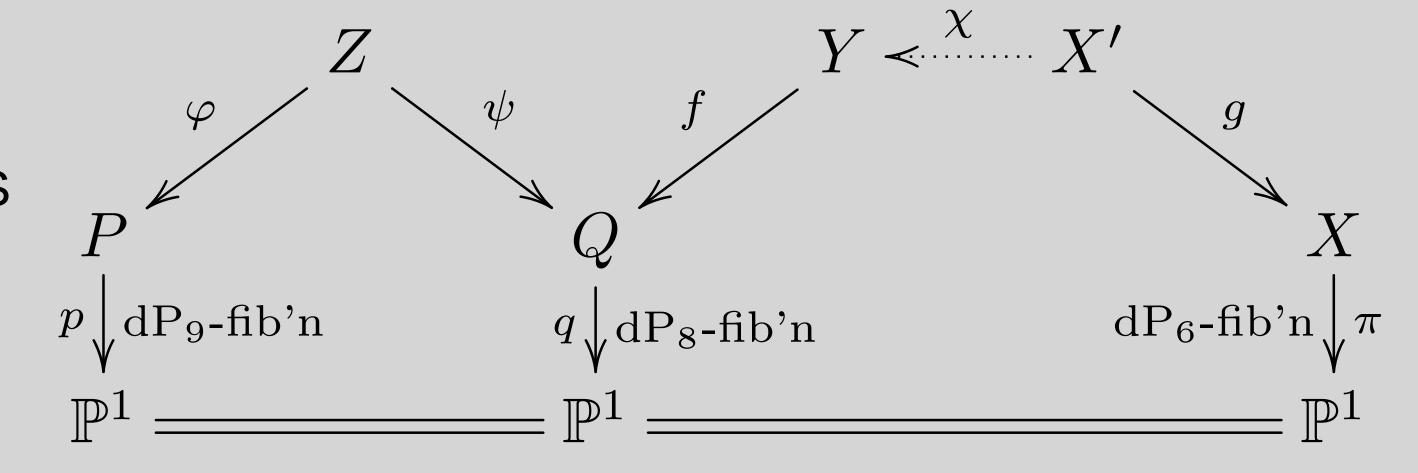


. Jopposite construction ($-K_Z$ is always $(p \circ \varphi)$ -ample)

Sarkisov link

- In addition, assume that $\operatorname{mult}_{s_0} B_h = \operatorname{mult}_s (B_h)_Q = 1$
- . Then strict transform of B_h is always linearly equivalent to -K over \mathbb{P}^1

C: smooth plane cubic curve $\pi\colon X\to \mathbb{P}^1$: del Pezzo fib'n of degree d=6, $B_f\colon \pi ext{-fiber}$, $\exists B_h$: prime divisor on X s.t • $C\cong \operatorname{some} \overline{\pi} ext{-fiber}$ • $X\setminus (B_f\cup B_h)\cong \mathbb{A}^3$



- . Both $B: \mathrm{sm.}\ p$ -bisection and $A:=T_P: p$ -trisection are contained in $(B_h)_P$
- . $\overline{p}: (B_h)_P \to \mathbb{P}^1$ satisfies: $\forall x \in \mathbb{P}^1$, $\overline{p}*(x)$: smooth $\Rightarrow \overline{p}*(x) \cong \overline{\pi}*(x)$

Observation

- . Let $p: P \to \mathbb{P}^1$: del Pezzo fib'n of degree 9,

 $S \subset P$: eff. divisor $\sim_{\mathbb{P}^1} -K_P$, $A \subset S$: p-trisection, $B \subset S$: sm. p-bisection.

- . Suppose \exists diagram (\star) and define $B_h := S_X$ and $\pi \colon B_h \to \mathbb{P}^1$
- . Then $\overline{p}: S \to \mathbb{P}^1$ satisfies: $\forall x \in \mathbb{P}^1$, $\overline{p}*(x)$: smooth $\Rightarrow \overline{p}*(x) \cong \overline{\pi}*(x)$
- . To prove Theorem B', it suffices to find plenty of $(P, S, A, B, \infty \in \mathbb{P}^1)$ s.t. $\exists \text{diagram } (\star) \text{ and } X \text{ is a completion of } \mathbb{A}^3 \text{ w/ boundary } B_h \cup \pi^{-1}(\infty)$
- . Remark: (\star) does not preserve $X \setminus (B_h \cup \pi^{-1}(\infty))$

§5 Construction

Theorem D [DKN24] (=Main Theorem)

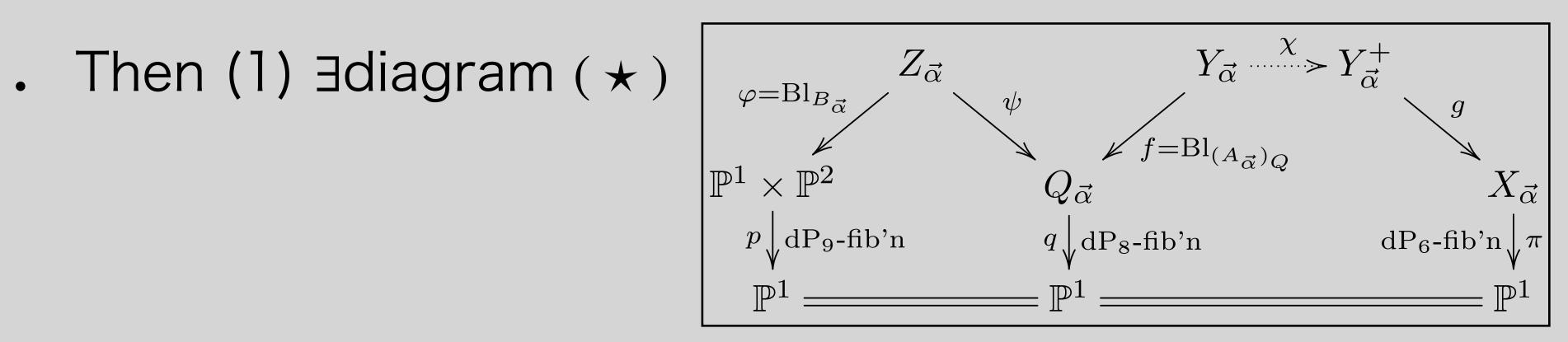
• $p = pr_1: \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^1$, $([x_0: x_1], [z_0: z_1: z_2]):$ coordinates of $\mathbb{P}^1 \times \mathbb{P}^2$.

. For $\overrightarrow{\alpha} = (\alpha_3, \alpha_4, \alpha_6, \alpha_7) \in k^4$, take $S_{\vec{\alpha}}, A_{\vec{\alpha}}, B_{\vec{\alpha}} \subset \mathbb{P}^1 \times \mathbb{P}^2$ as follows.

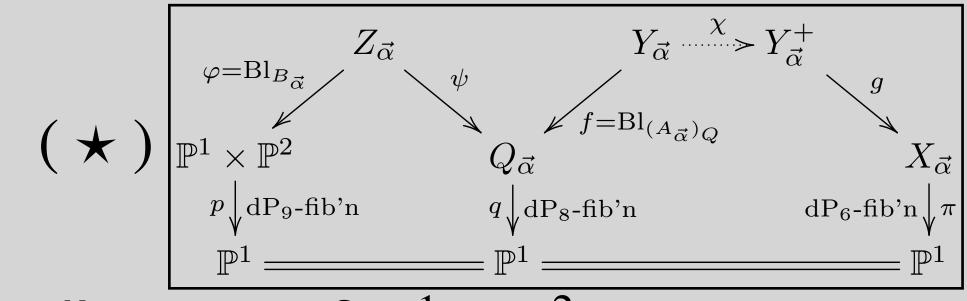
$$S_{\vec{\alpha}} := \{z_2^3 x_0 + (z_0^3 + z_2(z_1^2 + \alpha_3 z_1 z_2 + \alpha_4 z_0^2 + \alpha_6 z_0 z_1 + \alpha_7 z_0 z_2))x_1 = 0\}: (1,3) - \text{div}.$$

$$A_{\vec{\alpha}} := \{z_1 = 0\} \cup S_{\vec{\alpha}}$$
 : p -trisection

$$B_{\vec{\alpha}} := \{z_0 = 0, z_2^2 x_0 + (z_1^2 + \alpha_3 z_1 z_2) x_1 = 0\} \subset \{z_0 = 0\} \cup S_{\vec{\alpha}}$$
: p-bisection



Theorem D [DKN24]



- $p = pr_1: \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^1$, $([x_0: x_1], [z_0: z_1: z_2]):$ coordinates of $\mathbb{P}^1 \times \mathbb{P}^2$.
- . For $\overrightarrow{\alpha} = (\alpha_3, \alpha_4, \alpha_6, \alpha_7) \in k^4$, take $S_{\overrightarrow{\alpha}}, A_{\overrightarrow{\alpha}}, B_{\overrightarrow{\alpha}} \subset \mathbb{P}^1 \times \mathbb{P}^2$ as follows.

$$S_{\vec{\alpha}} := \{z_2^3 x_0 + (z_0^3 + z_2(z_1^2 + \alpha_3 z_1 z_2 + \alpha_4 z_0^2 + \alpha_6 z_0 z_1 + \alpha_7 z_0 z_2)\} : (1,3) - \text{div}.$$

$$A_{\vec{\alpha}} := \{z_1 = 0\} \cup S_{\vec{\alpha}}$$
 : p -trisection

$$B_{\vec{\alpha}} := \{z_0 = 0, z_2^2 x_0 + (z_1^2 + \alpha_3 z_1 z_2) x_1 = 0\} \subset \{z_0 = 0\} \cup S_{\vec{\alpha}}$$
: p-bisection

- . Then (1) \exists diagram (\star)
 - (2) X is a completion of \mathbb{A}^3 w/ boundary $B_{h,\vec{\alpha}} \cup B_{f,\vec{\alpha}} := (S_{\vec{\alpha}})_{X_{\vec{\alpha}}} \cup \pi^{-1}([1:0])$

Theorem D \Rightarrow Theorem B'

- $\overline{p}: S \to \mathbb{P}^1$: induced morphism
- . $\overrightarrow{\alpha} = (0,0,0,0) \Rightarrow S_{\overrightarrow{\alpha}} := \{z_2^3 x_0 + (z_0^3 + z_2 z_1^2) x_1 = 0\}$ $\Rightarrow \overline{p}^*([a:1]) \text{ is a smooth ell. curve w/ } j = 0 \quad (\forall a \in k)$
- . $\overrightarrow{\alpha} = (0,0,0,1) \Rightarrow S_{\overrightarrow{\alpha}} := \{z_2^3 x_0 + (z_0^3 + z_2 (z_1^2 + z_0 z_2)) x_1 = 0\}$ $\Rightarrow \overline{p}^*([a:1]) \text{ is a smooth ell. curve w/ } j = \frac{1728 \cdot 4}{4 + 27a^2} \quad (\forall x \in k \setminus \{ \pm (2\sqrt{-3})/9 \})$
- $\forall x \in \mathbb{P}^1$, $\overline{p}^*(x)$: smooth $\Rightarrow \overline{p}^*(x) \cong \overline{\pi}^*(x)$

Proof of Theorem D

- We omit subscript $\overrightarrow{\alpha}$
- Properties:

Sing
$$S = \{([1:0], [0:1:0])\}, A \cong B \cong \mathbb{P}^1$$
,

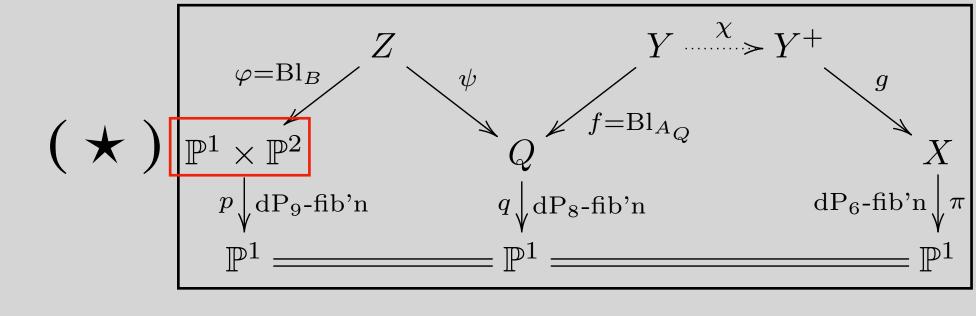
$$S \cap \{z_2 = 0\} = \{z_0 = z_2 = 0\}$$
: p-section,

$$S \cap \{z_0 = 0\} = \{z_0 = z_2 = 0\} \cup B$$
,

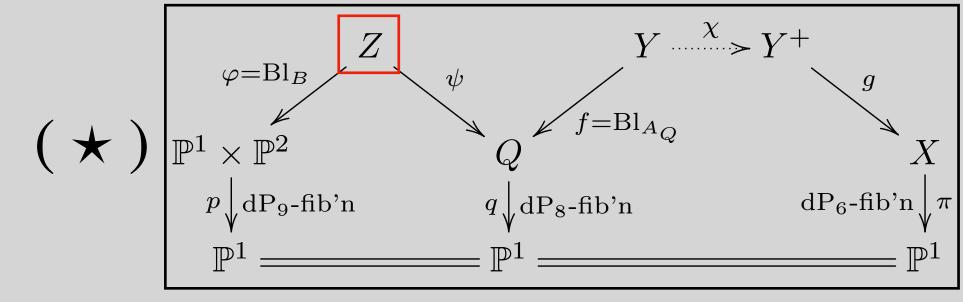
$$P\backslash(\{z_2=0\}\cup\{x_1=0\})\cong\mathbb{A}^3$$

$$\supset S \setminus (\{z_2 = 0\} \cup \{x_1 = 0\}) \cong \mathbb{A}^2$$
: linearizable

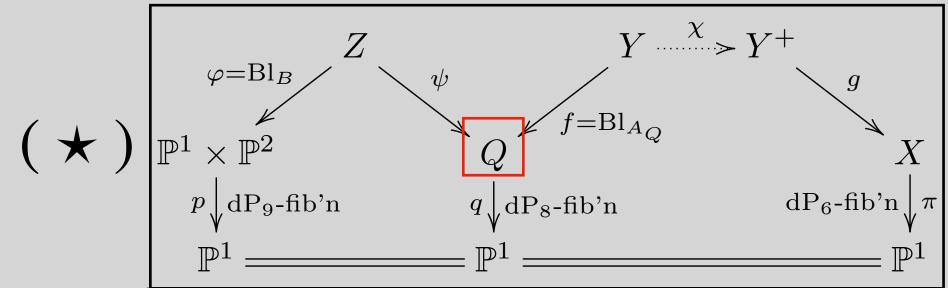
$$\supset A \setminus (\{z_2 = 0\} \cup \{x_1 = 0\}) \cong \mathbb{A}^1, B \setminus (\{z_2 = 0\} \cup \{x_1 = 0\}) \cong \mathbb{A}^1.$$



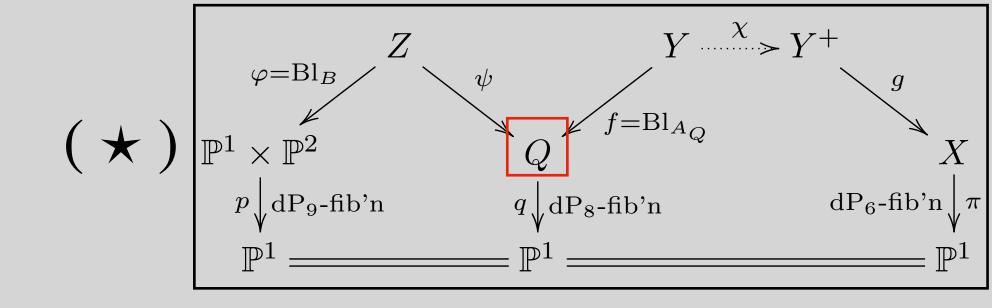
Proof of Theorem D



- $\varphi: Z \to \mathbb{P}^1 \times \mathbb{P}^2$: blow-up along B(Fano 3-fold of No.21 in [Mori-Mukai81, Table 3])
- . E_{φ} : φ -excep. divisor
- . $|\varphi^*\mathscr{O}_{\mathbb{P}^1\times\mathbb{P}^2}(2,2)-E_{\varphi}|$ defines $\psi\colon Z\to Q$: birational extremal contraction
- . $E_w = \text{strict transform of } \{z_0 = 0\} \text{ in } Z.$



- Q: weak Fano 3-fold of type (2.3.2) in [Takeuchi $\overline{2}$ 2, Theorem 2.3] endowed with a dP_8 -fib'n $q\colon Q\to \mathbb{P}^1$
- . $s = \psi(E_{\psi})$: q-section & the unique $(-K_Q)$ -trivial curve
- . $\exists \mathcal{O}_Q(1)$: Cartier div. s.t $-K_Q \sim \mathcal{O}_Q(2)$
- . Q is embedded into $\mathbb{F}(1,1,1,0):=\mathbb{P}_{\mathbb{P}^1}(\mathscr{O}_{\mathbb{P}^1}(1)^{\oplus 3}\oplus\mathscr{O}_{\mathbb{P}^1})$ by $|\mathscr{O}_{Q}(1)|$
- . $\mathbb{P}^1 \times \mathbb{P}^2 \dashrightarrow \mathbb{F}(1,1,1,0)$ is defined by $|\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^2}(1,2) \otimes \mathcal{F}_B|$



- . Let $S_f := q^{-1}([1:0])$
- . S_h , (resp. H_1 , H_2 , T): the strict transform of S_n , (resp. $\{z_1 = 0\}$, $\{z_2 = 0\}$, A) in Q
- . \exists coordinates ([$x_0: x_1$], [$w_0: w_1: w_2: w_3$]) of $\mathbb{F}(1,1,1,0)$ s.t.

$$Q = \{w_2^2 x_0 + x_1(w_1^2 + \alpha_3 w_1 w_2) - w_0 w_3 = 0\}$$

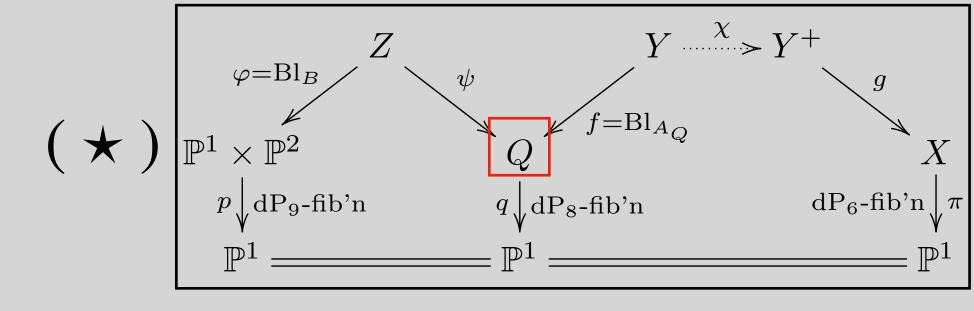
$$S_h = Q \cap \{x_1(w_0^2 + w_2(\alpha_4 w_0 + \alpha_6 w_1 + \alpha_7 w_2)) + w_2 w_3 = 0\} \sim \mathcal{O}_Q(2) - S_f$$

$$H_i = Q \cap \{w_i = 0\}$$
 (for $i = 1,2$)

$$\sim \mathcal{O}_Q(1) - S_f$$

$$T = S_h \cap H_1 \cap \{w_3^2 + x_1(w_0w_2x_0 + \alpha_4w_0w_3 + \alpha_7w_2w_3) = 0\}$$
: sm. *q*-trisection

$$s = \{w_0 = w_1 = w_2 = 0\}$$
: q-section



- . Properties: $S_h \cap H_1 = s \sqcup T$ (schematically)
 - $S_h \cap H_2 = 4s + (\text{curves in } S_f)$

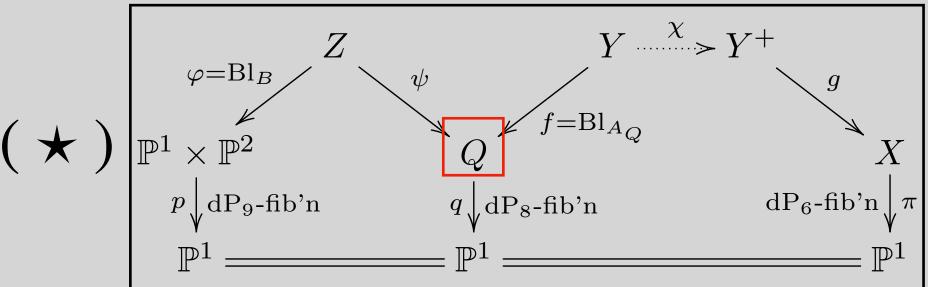
$$Q^{\circ} := Q \setminus (H_2 \cup S_f) \ (\cong \{x' + (w'_1)^2 + \alpha_3 w'_1 - w'_0 w'_3 = 0\} \text{ in } \mathbb{A}^4_{[x',w'_0,w'_1,w'_3]}) \cong \mathbb{A}^3_{[w'_0,w'_1,w'_3]}$$

$$\{v_1 = 0\} = H_1 \cap Q^{\circ} \cong \{w'_1 = 0\} \cong \mathbb{A}^2,$$

$$\{v_2 = 0\} = S_h \cap Q^{\circ} \cong \{(w'_0)^2 + \alpha_4 w'_0 + \alpha_6 w'_1 + \alpha_7 + w'_3 = 0\} \cong \mathbb{A}^2$$

$$\{v_1 = v_2 = 0\} = (H_1 \cap S_h) \cap Q^{\circ} = T \cap Q^{\circ} \ (\because s \subset H_2)$$

• Key lemma : ∃coordinates $[v_1, v_2, v_3]$ of $Q^{\circ} \cong \mathbb{A}^3$ s.t.



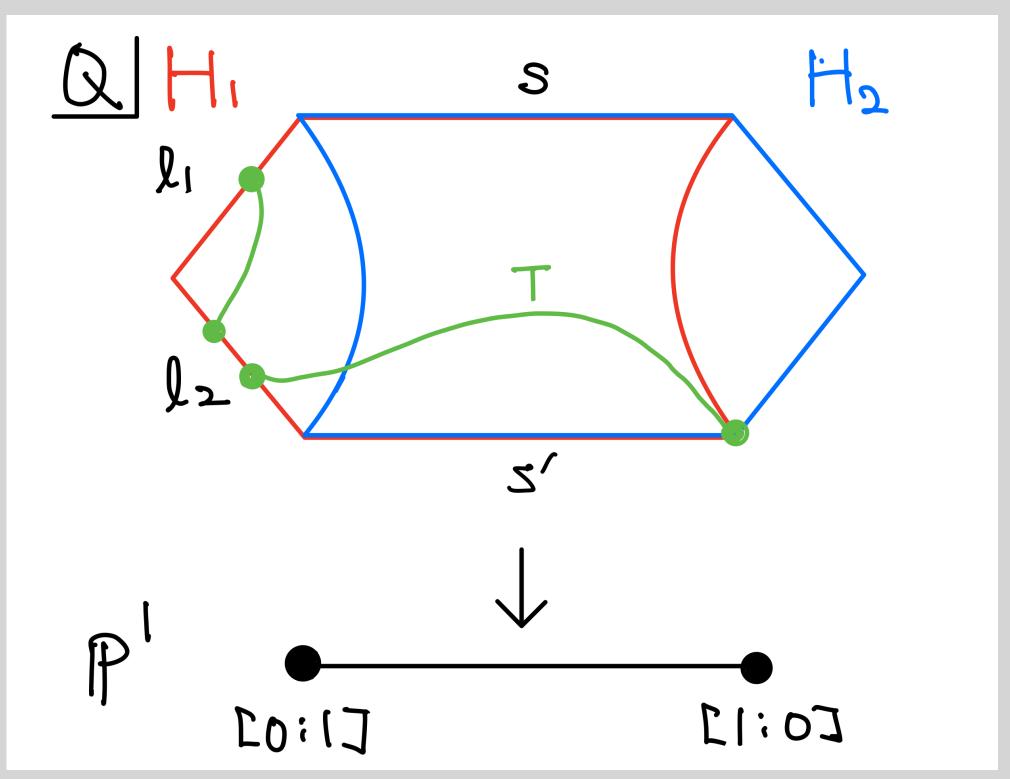
- . H_i : smooth (i = 1,2) and $H_1 \cap H_2 = s \sqcup (s' := \{w_1 = w_2 = \overline{w_3} = 0\}$): two q-section
- . conic bundle $q|_{H_1}$ (resp. $q|_{H_2}$) has the unique singular fiber, which is

reducible and over [0:1] (resp. [1:0])

.
$$(q|_{H_1})^{-1}([0:1]) = \{x_0 = w_0 = w_1 = 0\} =: l_1$$

 $\cup \{x_0 = w_1 = w_3 = 0\} =: l_2$

- $(l_i \cdot T)_{H_1} = i \text{ for } i = 1,2$
- . $T \cap H_2 = \{([1:0], [1:0:0:0])\} \subset S_f$



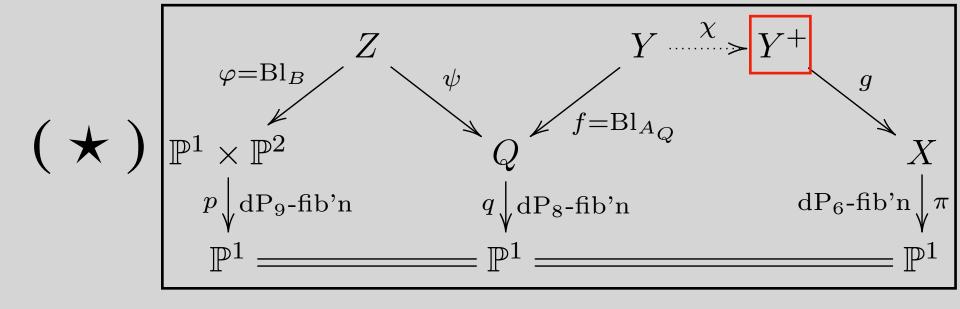
 $(\star) \begin{array}{c} Z \\ \varphi = \operatorname{Bl}_{B} \\ Z \\ \psi \\ P^{1} \times \mathbb{P}^{2} \\ p \downarrow \operatorname{dP}_{9}\text{-fib'n} \\ \mathbb{P}^{1} = \mathbb{P}^{1} \end{array} \qquad \begin{array}{c} Y \\ \varphi = \operatorname{Bl}_{A_{Q}} \\ X \\ q \downarrow \operatorname{dP}_{8}\text{-fib'n} \\ \mathbb{P}^{1} = \mathbb{P}^{1} \end{array}$

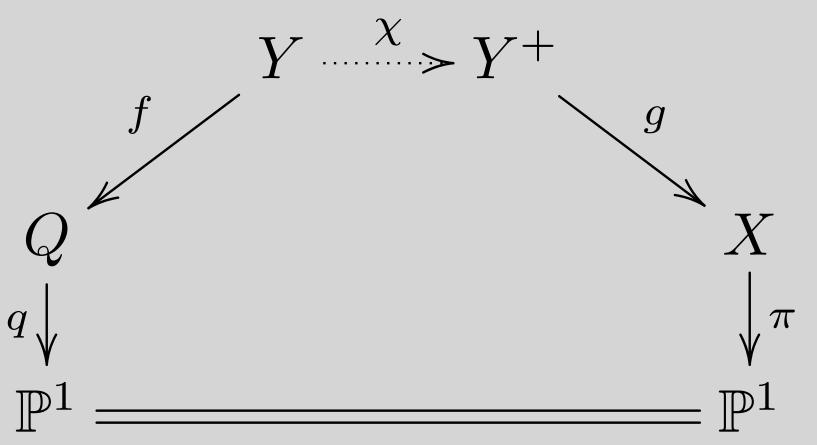
- $f: Y \to Q$: blow-up along T
- . Property: $-K_Y$ is nef and big (i.e., Y is weak Fano)

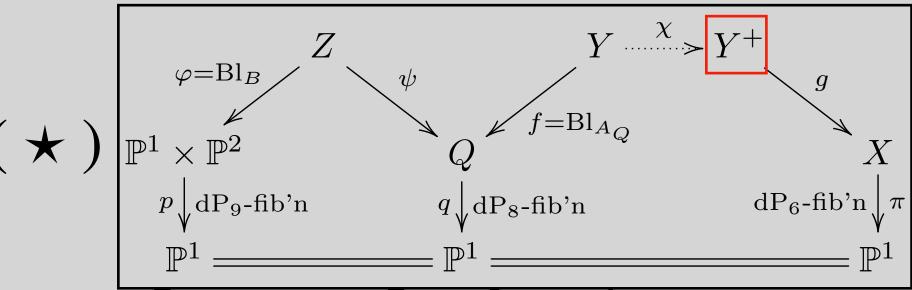
• By [Fukuoka17], ∃diagram

w/
$$\chi$$
: the flop/ \mathbb{P}^1 , π : dP $_6$ -fib'n,
 g : blow-up along a section, say s_0
 $E_g=(H_1)_{Y^+}$

- $B_h := (S_h)_X$, $B_f := (S_f)_X$
- . $X \setminus (B_h \cup B_f) \cong Y^+ \setminus ((S_h)_{Y^+} \cup (S_f)_{Y^+} \cup (H_1)_{Y^+})$ "=" $Y^+ \setminus ((S_h)_{Y^+} \cup (S_f)_{Y^+} \cup (H_1)_{Y^+} \cup (H_2)_{Y^+}) + (H_2)_{Y^+} \setminus ((S_h)_{Y^+} \cup (S_f)_{Y^+} \cup (H_1)_{Y^+})$







- . χ is the the Atiyah flop of l:= (the strict transform of l_2 in Y)
 - : Suppose $r \subset Y$ is a flopping curve ($\Rightarrow r$ is not f-exceptional)

$$-K_{Y} \sim f^{*}H_{1} + 2f^{*}S_{f} + (H_{1})_{Y} \Rightarrow 0 = (-K_{Y} \cdot r)_{Y} = (H_{1}, r_{Q})_{Q} + ((H_{1})_{Y} \cdot r)_{Y}$$
$$> ((H_{1})_{Y} \cdot r) \qquad \therefore r \subset (H_{1})_{Y}$$

If r_Q is a smooth $q|_{H_1}$ -fiber, then $(-K_Y \cdot r)_Y = (-K_Q, r_Q)_Q - (T \cdot r)_{H_1} = 1$ 4

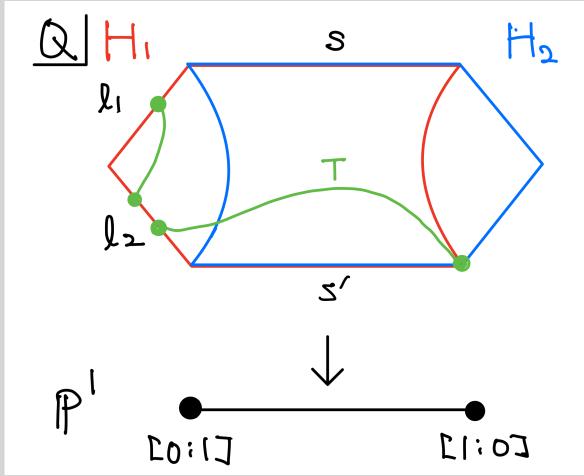
If
$$r_Q = l_i$$
, then $(-K_Y \cdot r)_Y = (-K_Q, r_Q)_Q - (T \cdot r)_{H_1} = 2 - i$ $\therefore r_Q = l_1$

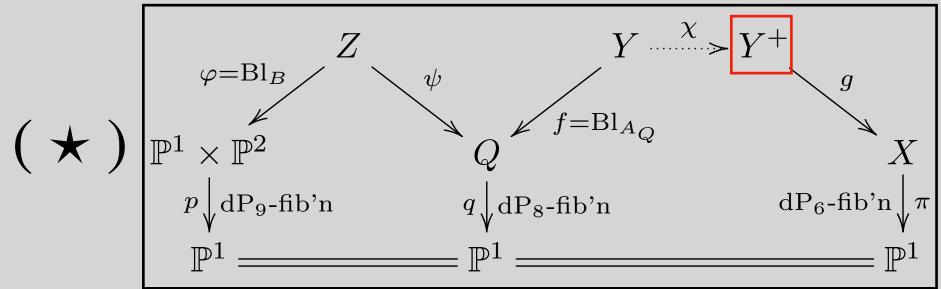
$$0 \longrightarrow N_l(H_1)_Y \longrightarrow N_lY \longrightarrow (N_{(H_1)_Y}Y)|_l \longrightarrow 0 :: N_lY \cong \mathcal{O}_l(-1)^{\oplus 2}$$

$$\parallel \qquad \qquad \parallel$$

$$\mathcal{O}_l(-1)$$

$$\mathcal{O}_l(-1)$$





- . χ is the the Atiyah flop of l:= (the strict transform of l_2 in Y)
- $l \subset (H_1)_Y \text{ and } l^+ \subset (H_2)_{Y^+} \text{ (} \because l_2 \cap H_2 \neq \emptyset \text{ and } T \cap H_2 \subset S_f \Rightarrow l \cap (H_2)_Y \neq \emptyset \text{)}$
- $Y^{+}\setminus ((S_{h})_{Y^{+}}\cup (S_{f})_{Y^{+}}\cup (H_{1})_{Y^{+}}\cup (H_{2})_{Y^{+}})\cong Y\setminus ((S_{h})_{Y}\cup (S_{f})_{Y}\cup (H_{1})_{Y}\cup (H_{2})_{Y})$
 - = (Blow-up of $Q^{\circ} = Q \setminus (H_2 \cup S_f)$ along $T \cap Q^{\circ}$)

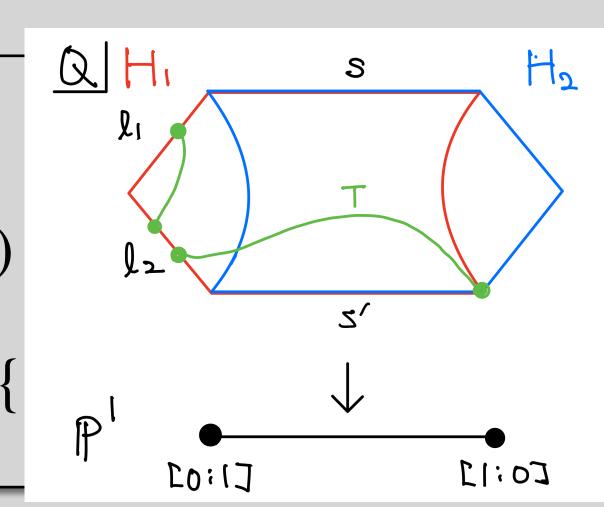
\(strict transform of $(H_1 \cap Q^\circ) \cup (S_h \cap Q^\circ)$ \)

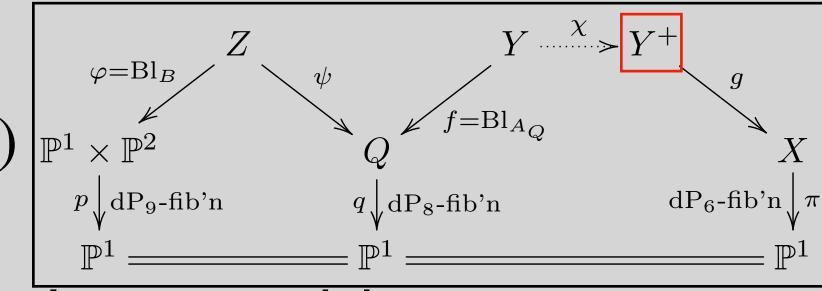
$$\cong \mathbb{A}^2 \times (\mathbb{A}^1)^*$$

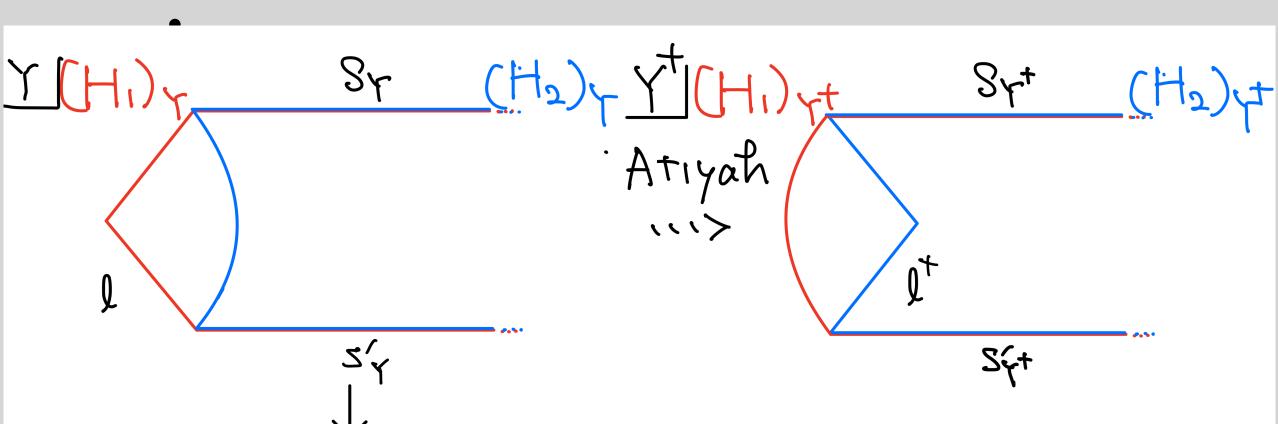
Key Lemma:

 \exists coordinates $[v_1, v_2, v_3]$ of $Q \setminus (H_2 \cup S_f)$

$$\{v_1 = 0\} = H_1 \cap Q^\circ, \{v_2 = 0\} = S_h \cap Q^0, \{v_1 = 0\}$$







E0:11

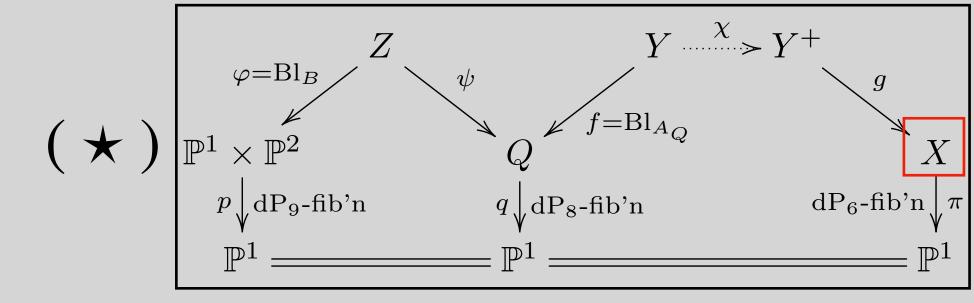
Q H

[1:01

- $(H_2)_{Y^+}\setminus (S_f)_{Y^+}$ is isom. to blow-up
- of $\mathbb{A}^1 \times \mathbb{P}^1$ at a point $(=l \cap s_Y')$
- $S_h \cap H_2 = 4s + (\text{curves in } S_f)$
- $\Rightarrow (S_h)_{Y^+} \cap (H_2)_{Y^+} = s_{Y^+} + (\text{curves in}(S_f)_{Y^+})$

•
$$H_1 \cap H_2 = s \sqcup s' \Rightarrow (H_1)_{Y^+} \cap (H_2)_{Y^+} = s_{Y^+} \sqcup s'_{Y^+}$$

•
$$(H_2)_{Y^+} \setminus ((S_h)_{Y^+} \cup (S_f)_{Y^+} \cup (H_1)_{Y^+}) \cong \mathrm{Bl}_t(\mathbb{A}^1 \times \mathbb{P}^1) \setminus (s_{Y^+} \cup s'_{Y^+}) \cong \mathbb{A}^2$$

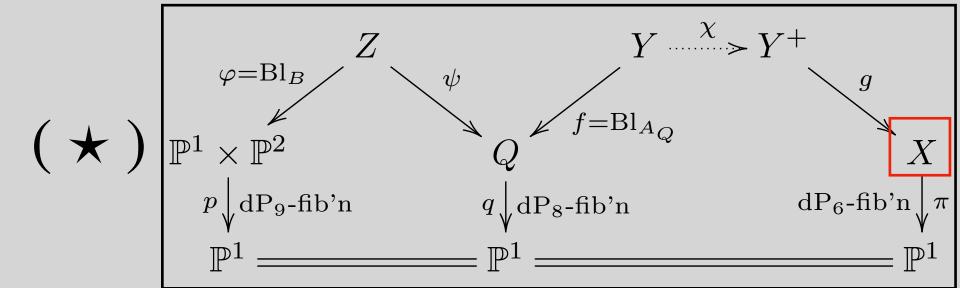


• $X \setminus (B_h \cup B_f)$

"="
$$Y^+ \setminus ((S_h)_{Y^+} \cup (S_f)_{Y^+} \cup (H_1)_{Y^+} \cup (H_2)_{Y^+}) + (H_2)_{Y^+} \setminus ((S_h)_{Y^+} \cup (S_f)_{Y^+} \cup (H_1)_{Y^+})$$
"=" $\mathbb{A}^2 \times (\mathbb{A}^1)^* + \mathbb{A}^2 \cdots \mathbb{I}$

$$-K_Q \sim S_h + S_f \& T \subset S_h \Rightarrow -K_X \sim B_h + B_f : \pi\text{-ample} \Rightarrow X \setminus (B_h \cup B_f) = \operatorname{Spec}(\exists \mathfrak{A})$$

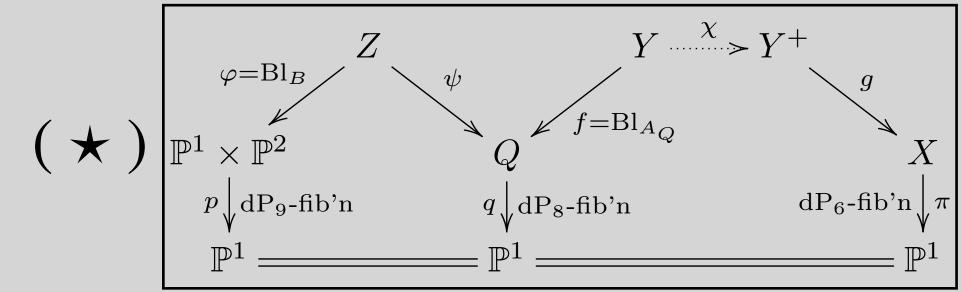
.
$$\{B_h, B_f\}$$
: \mathbb{Z} -basis of $\operatorname{Pic}(X) \Rightarrow \mathfrak{A}$: UFD, & $\mathfrak{A}^* = k^* \cdots \mathbb{Q}$



- . ① +② $\Rightarrow \exists t \in \mathfrak{A} \text{ s.t. } \mathfrak{A}[t^{-1}] \cong k[z,z^{-1}][x,y] \& \mathfrak{A}/(t) \cong k[x',y'] \cdots ③$
- . [Miyanishi84, §2.4] $\Rightarrow \Re := \Re \cap k[z, z^{-1}] = k[t]$ is a polynomial ring
- . $\ \ \, \Im \Rightarrow \forall \ \, \text{fiber of} \, p' \colon X \backslash (B_h \cup B_f) = \operatorname{Spec}(\mathfrak{A}) \to \operatorname{Spec}(\mathfrak{R}) \cong \mathbb{A}^1 \, \, \text{is affine plane}$
- . [Sathaye83, Bass-Connell-Wright77] $\Rightarrow p'$ is trivial fibration

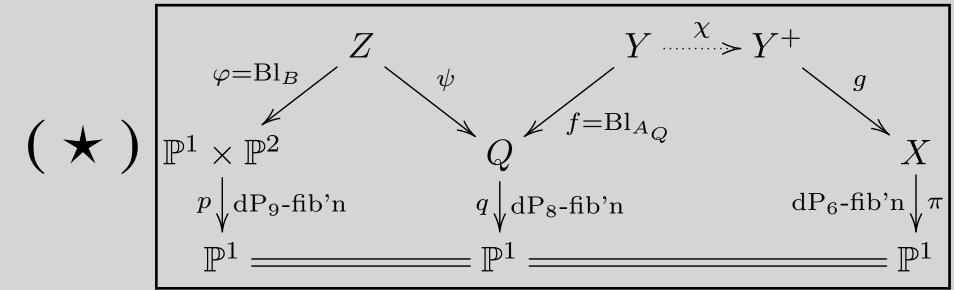
$$\Rightarrow X \setminus (B_h \cup B_f) \cong \mathbb{A}^3 \square$$

Theorem E



- Let $\rho': k^* \curvearrowright k^3; e \cdot (\alpha_3, \alpha_4, \alpha_7) = (e^3 \alpha_3, e^2 \alpha_4, e^4 \alpha_7)$ $\rho: k^* \curvearrowright k^4; e \cdot (\alpha_3, \alpha_4, \alpha_6, \alpha_7) = (e^3 \alpha_3, e^2 \alpha_4, e^4 \alpha_7)$
- Fix $\overrightarrow{\alpha} = (\alpha_3, \alpha_4, \alpha_6, \alpha_7)$ and $\overrightarrow{\beta} = (\beta_3, \beta_4, \beta_6, \beta_7) \in k^4$,
- . Set $\overrightarrow{\alpha}' = (\alpha_3, \alpha_4, \alpha_7)$ and $\overrightarrow{\beta}' = (\beta_3, \beta_4, \beta_7) \in k^4$,
- . Then (1) $\overrightarrow{\alpha}' \sim_{\rho'} \overrightarrow{\beta}' \iff \exists \Phi \colon X_{\overrightarrow{\alpha}} \xrightarrow{\sim} X_{\overrightarrow{\beta}}.$

(2)
$$\overrightarrow{\alpha} \sim_{\rho} \overrightarrow{\beta} \iff \exists \Phi \colon X_{\overrightarrow{\alpha}} \xrightarrow{\sim} X_{\overrightarrow{\beta}} \text{ s.t. } \Phi(B_{h,\overrightarrow{\alpha}}) = B_{h,\overrightarrow{\beta}} \text{ and } \Phi(B_{f,\overrightarrow{\alpha}}) = B_{f,\overrightarrow{\beta}}$$



- . Claim: $s_0 \subset X$ is the unique $(-K_X)$ -negative curve
 - \therefore For a curve $r \subset X$,

$$r = s_0 \Rightarrow (-K_X \cdot r) = \frac{8(-K_Q \cdot T) - 24p_a(T) - (-K_Q)^3 - 32}{8}$$
 [Fukuoka 17]

$$r_{Y^+} = l^+ \Rightarrow (-K_X \cdot r) = (-K_{Y^+} + (H_1)_{Y^+} \cdot l^+) = ((H_1)_{Y^+} \cdot l^+) \ge 0$$

Otherwise,
$$(-K_X \cdot r) = (-K_{Y^+} + (H_1)_{Y^+} \cdot r_{Y^+}) \ge (-K_{Y^+} \cdot r_{Y^+}) = (-K_Y \cdot r_Y) \ge 0$$

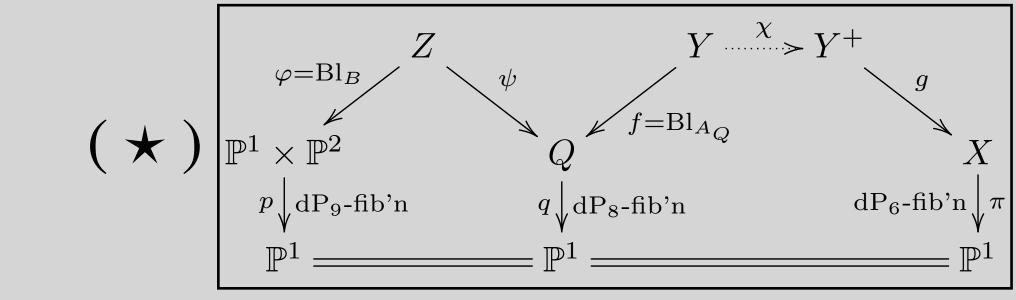
 $(\star) \begin{array}{c} Z & Y & \stackrel{\chi}{\longrightarrow} Y^{+} \\ \varphi = \operatorname{Bl}_{B} & \psi & f = \operatorname{Bl}_{A_{Q}} \\ \mathbb{P}^{1} \times \mathbb{P}^{2} & Q & X \\ p \downarrow \operatorname{dP}_{9}\text{-fib'n} & q \downarrow \operatorname{dP}_{8}\text{-fib'n} & \operatorname{dP}_{6}\text{-fib'n} \downarrow \pi \\ \mathbb{P}^{1} & & \mathbb{P}^{1} & & \mathbb{P}^{1} \end{array}$

- . Suppose $\exists \Phi \colon X_{\vec{\alpha}} \xrightarrow{\sim} X_{\vec{\beta}}$
- . $s_0 \subset X$ is the unique $(-K_X)$ -negative curve

$$\Rightarrow \Phi(s_{0,\vec{\alpha}}) = s_{0,\vec{\beta}}$$

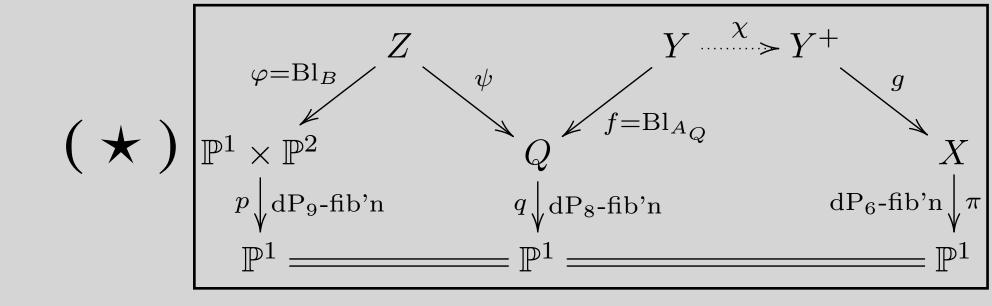
 \Rightarrow Φ induces isomorphisms $Y_{\vec{\alpha}}^+ \stackrel{\sim}{\to} Y_{\vec{\beta}}^+$, $Y_{\vec{\alpha}} \stackrel{\sim}{\to} Y_{\vec{\beta}}$, and $Q_{\vec{\alpha}} \stackrel{\sim}{\to} Q_{\vec{\beta}}$

In particular, $Q_{\vec{\alpha}} \overset{\sim}{\to} Q_{\vec{\beta}}$ sends $T_{\vec{\alpha}}$ to $T_{\vec{\beta}}$



- . $s \subset Q$ is the unique $(-K_Q)$ -trivial curve
 - $\Rightarrow Q_{\vec{\alpha}} \xrightarrow{\sim} Q_{\vec{\beta}} \text{ sends } s_{\vec{\alpha}} \text{ to } s_{\vec{\beta}}$
 - \Rightarrow Φ induces isomorphisms $Z_{\vec{\alpha}} \xrightarrow{\sim} Z_{\vec{\beta}}$, and $\Psi \colon \mathbb{P}^1 \times \mathbb{P}^2 \xrightarrow{\sim} \mathbb{P}^1 \times \mathbb{P}^2$ In particular, Ψ sends $A_{\vec{\alpha}}$ (resp. $B_{\vec{\alpha}}$) to $A_{\vec{\beta}}$ (resp. $B_{\vec{\beta}}$)
- . $\therefore \exists \Phi \colon X_{\vec{\alpha}} \xrightarrow{\sim} X_{\vec{\beta}} \iff \exists \Psi \in \operatorname{Aut}(\mathbb{P}^1 \times \mathbb{P}^2) \text{ s.t } \Psi(A_{\vec{\alpha}}) = A_{\vec{\beta}} \& \Psi(B_{\vec{\alpha}}) = B_{\vec{\beta}}$ $\iff \overrightarrow{\alpha}' \sim_{\rho'} \overrightarrow{\beta}'$
- Proof of Theorem E (2) is similar.

Mukai 3-fold of g = 12



- . Y contains two $(-K_Y)$ -trivial curves $l \sqcup s_Y$
- . $N_l Y \cong \mathcal{O}_l(-1)^{\oplus 2}$ and $N_{s_y} Y \cong \mathcal{O}_{s_y}(-1)^{\oplus 2}$
- W (:= the anti-canonical model of Y) is a Fano 3-fold with two ODP of div. class rank three of Picard rank one (i.e. maximally non-factorial) with $(-K_W)^3 = (-K_Y)^3 = 22$ (i.e. Mukai 3-fold of genus 12)

Mukai 3-fold of g = 12

- [Mukai, Peternell]
 - \Rightarrow 34-dim'l family of smooth Mukai 3-folds of g=12 $\supset \mathbb{A}^3$
- E.g. ([Prokhorov16]). $Y \xrightarrow{\chi} Y^+ \qquad \chi : \text{Atiyah flop of } \Upsilon$ $V_5 \qquad \pi : \text{del Pezzo fib'n of } d = 6$

Midpoint is Mukai 3-fold of g = 12 with one ODP $\supset \mathbb{A}^3$

. W= (Mukai 3-fold of g=12 with two ODP) contains $Y\backslash ((S_h)_Y\cup (S_f)_Y\cup (H_1)_Y)\cong Y^+\backslash ((S_h)_{Y^+}\cup (S_f)_{Y^+}\cup (H_1)_{Y^+}\cup l^+)\cong \mathbb{A}^1\times (\mathbb{A}^2)^*$

Thank you for listening