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§1 Preliminary results

k is an algebraically closed field of characteristic zero.
k = C when topological arguments are used.

Definition 1.1
The descending chain condition ((DCC), for short) for finite
surjective morphisms of algebraic varieties belonging to a category
C asserts that for any descending chain with Xi and fi being
objects and morphisms in C,

X1
f1−→ X2 −→ · · · · · · → Xn

fn−→ Xn+1 −→ · · ·

there exists an integer N > 0 such that fn is an isomorphism for
every n ≥ N. We assume that a finite morphism is surjective.
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Remark 1.2
(1) If an algebraic variety X has a finite endomorphism f : X → X
of deg f > 1 then the repetitions of f give a non-ending descending
chain with all members isomorphic to X . Hence the (DCC) does
not hold. This remark applies to abelian varieties and algebraic tori.
(2) Examples of algebraic variety not satisfying the (DCC) are the
projective spaces Pn and the affine spaces An. In fact, if
{X0,X1, . . . ,Xn} is a system of homogeneous coordinates of Pn

the morphism

{X0,X1, . . . ,Xn} 7→ {Xm
0 ,X

m
1 , . . . ,X

m
n }, m > 1

gives a finite endomorphism of Pn with degree mn. Similarly, if
{x1, . . . , xn} is a system of coordinates of An, the morphism
{x1, . . . , xn} 7→ {xm1 , . . . , xmn } gives a finite endomorphism of An of
degree mn.
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We study if the (DCC) for finite morphisms holds in the cases:

(1) All Xi are smooth varieties of non-negative Kodaira dimension.

(2) All Xi are smooth Q-homology planes, which we call Q-planes.

(3) There exists an algebraic group G such that all Xi are
G -varieties and all fi are G -equivariant.

(4) All Xi are del Pezzo surfaces.

First consider the case (1) for curves. Let

X1
f1−→ X2 −→ · · · · · · −→ Xn

fn−→ Xn+1 −→ · · · (1)

be an infinite descending chain of finite morphisms of normal
algebraic curves with di := deg fi > 1 for every i .
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Let Ci : normal completion of Xi and
ϕi : Ci → Ci+1 extension of fi .
We have an infinite descending chain of finite morphisms of
complete normal curves

C1
ϕ1−→ C2 −→ · · · · · · → Cn

ϕn−→ Cn+1 −→ · · · . (2)

Di = Ci − Xi , a reduced divisor, mi = degDi . If X1 is complete
then Xi = Ci and mi = 0 for all i . Since fi : Xi → Xi+1 is a finite
morphism, ϕ∗i (Di+1)red = Di . By the log ramification divisor
formula, we have

KCi
+ Di ∼ ϕ∗i (KCi+1

+ Di+1) + Ri + Si , (3)

where Ri + Si is the log ramification divisor with Supp (Si ) ⊂ Di

and Supp (Ri ) ⊂ Xi .
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Claim Si = 0 if X1 is affine. In fact, let Q be a point of Di+1 with
a local parameter y of Ci+1 at Q. Write ϕi

∗(y) = c
∏

j x
ej
j , where

xj is a local parameter of Ci at a point of Di over Q. Then
ϕi
∗(dy/y) =

∑
j ej(dxj/xj). So, Si = 0. Let gi be the genus of Ci .

Then we have

2gi − 2 + mi = di (2gi+1 − 2 + mi+1) + degRi , (4)

where degRi ≥ 0. Since di ≥ 2 and dimi+1 ≥ mi as the inverse
image of a point of Di+1 by ϕi has at most di points, we have

2gi − 2 = di (2gi+1 − 2) + (dimi+1 −mi ) + degRi ≥ 2(2gi+1 − 2). (5)

Hence gi ≥ 2gi+1 − 1, whence gi ≥ gi+1. Also mi ≥ mi+1. The
sequences {gi} and {mi} are descending sequences of non-negative
integers. Replacing the given chain by a subchain, which is
obtained from the original chain by removing finitely many terms,
we may assume gi = gi+1 and mi = mi+1 for every i . So we have

0 = (di − 1)(2gi − 2 + mi ) + degRi . (6)
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Since mi ≥ 0, di ≥ 2 and degRi ≥ 0, one of the following cases
takes place.

(i) gi = 1, mi = 0 and degRi = 0. Then Xi is an elliptic curve
and fi is unramified.

(ii) gi = 0, mi = 0 and degRi = 2(di − 1). Then Xi
∼= P1 and fi

is a cyclic covering of degree di .

(iii) gi = 0, mi = 1 and degRi = di − 1. Then Xi
∼= A1 and fi is a

cyclic covering of degree di .

(iv) gi = 0, mi = 2 and degRi = 0. Then Xi
∼= A1

∗ and fi is a
cyclic covering of degree di .

Lemma 1.3
For a descending chain (1) for normal algebraic curves with
di := deg fi > 1, we have:

(1) If X1 is complete then either Xn
∼= P1 or Xn is an elliptic curve

for ∀n ≥ N for ∃N.

(3) If X1 is affine then either Xn
∼= A1 or Xn

∼= A1
∗ for ∀n ≥ N for

∃N.
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§2 Homology planes : Z-planes and Q-planes

Lemma 2.1
Let f : X → Y be a finite morphism of affine normal surfaces of
degree d . If X is a Z-plane (resp. Q-plane), so is Y .

Proof.
Suppose Hi (X ;Q) = 0 for i = 1, 2. Since
f∗ : Hi (X ;Q)� Hi (Y ;Q) is surjective for i = 1, 2, Y is a Q-plane.
H2(Y ;Z) is torsion-free if H2(Y ;Z) 6= 0 by Theorem of
Kaup-Narasimhan-Hamm. If X is a Z-plane, dξ = 0 for
ξ ∈ H2(Y ;Z). So, H2(Y ;Z) = 0.
Let ξ ∈ H1(Y ;Z) be a nonzero element. Then dξ = 0. If ξ 6= 0, ξ
corresponds to an abelian Galois extension σ : Y ′ → Y , where σ is

étale. Since H1(X ;Z) = 0, f splits as f : X
f ′−→ Y ′

σ−→ Y , where
f ′ is a finite morphism and Y ′ is a Q-plane. Then χ(Y ′) = 1. But
χ(Y ′) = (deg σ)χ(Y ) as σ is étale and finite. So, deg σ = 1. This
is a contradiction. Hence Y is a Z-plane.
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X : a Q-plane,
X ↪→ V a log smooth completion,
D = V − X an SNC-divisor, D a tree of P1s.
N : a tubular nbd of D s.t. D is a strong deformation retract of N,
M = ∂N : the boundary of N. Then M is a compact orientable
3-mfd, called a 3-mfd at infinity of X .
π∞1 (X ) := π1(M) : the fundamental group at infinity of X , which
is described by generators and relations with repsect to the
intersection matrix of D (the Mumford-Ramanujam method).

Lemma 2.2
Let X be a complex affine normal surface.

(1) X is isomorphic to A2 if and only if π∞1 (X ) = (1).

(2) Suppose X is topologically contractible. Then X is isomorphic
to A2/G if and only if π∞1 (X ) is a finite group, where
G ∼= π∞1 (X ).
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Lemma 2.3
Let X be a Z-plane (resp. Q-plane) and let M be a 3-manifold at
infinity. Then M is a Z-homology (resp. Q-homology) 3-sphere.

Proof.
Let X ↪→ V be a minimal log smooth completion of X and
D = V − X . Since X is factorial, Pic (V ) is generated freely by
the components of D. Since X is rational, pg (V ) = 0. So all the
2-cycles on V are algebraic. Note that if X is a Q-plane then the
determinant of the intersection matrix of D is non-zero. This
implies, by Poincaré duality, that the intersection form on the
components of D is unimodular if X is a Z-plane. Finally, D is a
tree of the P1. H1(M;Z) = 0 since the intersection form on D is
unimodular. Hence M is a Z-homology 3-sphere. All this argument
works with Q-homologies if X is a Q-plane and in this case the
3-manifold M is a Q-homology 3-sphere.
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Lemma 2.4
Let f : X → Y be a finite morphism of Z-planes. Then f induces a
surjective homomorphism f∗ : π∞1 (X )� π∞1 (Y ).

Proof.
It can be shown that f induces a group homomorphism
f∗ : π∞1 (X )→ π∞1 (Y ) such that the image H of f∗ is a subgroup of

finite index. Further, f has a factorization f : X
f ′−→ Y ′

f ′′−→ Y
such that π∞1 (Y ′) ∼= H, f ′ is a finite morphism and f ′′ is a finite
étale morphism. By Lemma 2.1, Y ′ is a Z-plane. Hence χ(Y ′) = 1
and χ(Y ′) = deg f ′′ · χ(Y ) = deg f ′′. So, f ′′ is an isomorphism.
This implies that f∗ is surjective.

The following result is known in differential topology.

Lemma 2.5
Any closed orientable 3-manifold dominates only finitely many
Z-homology 3-spheres.
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Related to these results, the following problem is interesting.

Problem 2.6
Let f : X → Y be a finite morphism of smooth affine surfaces such
that the induced homomorphism f∗ : π∞1 (X )→ π∞1 (Y ) is an
isomorphism, where we assume that π∞1 (X ) 6= (1). Is f then an
isomorphism?

There is an affirmative partial answer to Problem 2.6.

Theorem 2.7
Let f : X → Y be a finite morphism of smooth affine surfaces X
and Y with κ(X ) ≥ 0 and κ(Y ) ≥ 0. Suppose that the induced
homomorphism f∗ : π∞1 (X )→ π∞1 (Y ) is an isomorphism. Then f
is an isomorphism.
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Proof.
Let M,N be the 3-mfds at infinity for X ,Y respectively. By
Perelman’s result both M,N are geometric 3-mfds. Clearly, M,N
are orientable. Let X ⊂ V , Y ⊂W be minimal log smooth
completions and let D := V − X , ∆ := W − Y . Then any
maximal rational twig of D (resp. ∆) is admissible. By a result of
W. Neumann, M,N are both prime manifolds. Since
π∞1 (M)

∼−→ π∞1 (N), by W. Neumann, M and N are
homeomorphic. It is then shown that f is either a homotopy
equivalence, or homotopic to a topological covering map unless
π1(M) is finite or cyclic.
Suppose deg f > 1. Then the following assertions hold.

(1) π1(M) is not finite.

(2) π1(M) is not cyclic.

(3) f : M → N is not a homotopy equivalence.

(4) f : M → N is not homotopic to a topological covering.

So, we have deg f = 1, and f is an isomorphism.
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There is an unsolved problem asking if a smooth affine
hypersurface S := {x2 + y2 + z2 = 1} has a finite endomorphism
of degree > 1.

Proposition 2.8

Suppose that Problem 2.6 holds in the case κ = −∞. Then we
have:

(1) π∞1 (S) ∼= Z/2Z.

(2) There are no finite endomorphisms of S with degree > 1.

Proof.
(2) Let f : S → S be a finite endomorphism of degree > 1. Then f
induces a group endomorphism f∗ of π∞1 (S) ∼= Z/2Z. If f∗ is an
isomorphism then f is an isomorphism by the assumption.
Otherwise, f∗ has image (0). Then there is a splitting

f : S
f ′−→ X

f ′′−→ S , where X is a smooth affine surface with
π∞1 (X ) = (0). By Lemma 2.2, X ∼= A2. But there is no finite
morphism A2 → S .
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§3 G -varieties

Problem 3.1
Let G be an algebraic group defined over k. Let

X1
f1−→ X2 −→ · · · · · · −→ Xn

fn−→ Xn+1 −→ · · · (7)

be a descending chain of normal affine G -varieties and
G -equivariant finite morphisms. Assume that the algebraic quotient
Yi = Xi/G exists as an algebraic variety for all i . Suppose that

Y1
g1−→ Y2 −→ · · · · · · −→ Yn

gn−→ Yn+1 −→ · · · (8)

satisfies the (DCC). Does the chain (7) satisfy the (DCC)?
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Here we note the following result.

Lemma 3.2
Let A ⊃ B be normal affine k-domains such that A is a finite
B-module. We assume that G acts on A and B equivariantly. Let
A0 and B0 be the rings of G -invariants of A and B, respectively.
Then A0 is integral over B0. If A0 is an affine k-domain then A0 is
a finite B0-module and B0 is an affine k-domain.

Proof.
Let z be an element of A0. The minimal equation of z over Q(B),
f (z) = zn + β1z

n−1 + · · ·+ βn = 0, βi ∈ Q(B), is a monic
equation over B if B is normal. Hence A0 is integral over
B0 = A0 ∩ B.

Proposition 3.3

(1) If G is a finite group, Problem 3.1 has a positive answer.

(2) If G is a reductive algebraic group of positive dimension,
Problem 3.1 has a negative answer.
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Proof.
Replace the chain (7) by a subchain and assume that gi are all
isomorphisms. Suppose G is reductive. Then each quotient Yi is a
good quotient. So, there exists an open set Ui of Yi such that
q−1i (Q) is a closed orbit isomorphic to G/Hi for Q ∈ Ui . Let P1

be a point of X1 s.t. GP1
∼= q−11 (q1(P1)) ∼= G/H1. Let

Pi = (fi−1 ◦ · · · ◦ f1)(P1) for i ≥ 2 and q−1i (qi (Pi )) ∼= G/Hi with
the stabilizer group Hi of Pi . So we have an ascending chain of
subgroups of G ,

H1 ⊂ H2 ⊂ · · · ⊂ Hi ⊂ · · · . (9)

(1) If G is a finite group. Then Hn = HN for every n ≥ ∃N. Then
fn : Xn → Xn+1 is birational for n ≥ N, and hence an isomorphism
by the Zariski Main Theorem.
(2) If G is reductive of dimG > 0. Then G contains Gm as a
subgroup. Hence there exists an infinite ascending chain of cyclic
finite subgroups of G ; H1 ( H2 ( · · · · · · ( Hn ( Hn+1 ( · · · . Let
Xi = G/Hi be the homogeneous space of the left cosets of Hi .
Then the chain {Xi} never stops. 17 / 28



Theorem 3.4
In Problem 3.1, assume that G = Ga and the Xi are affine normal
Ga-varieties. If the chain (8) satisfies (DCC ) then the chain (7)
satisfies the (DCC ).

Proof.
It is known that the image of the quotient morphism qi : Xi → Yi

contains all codimension one points of Yi for every i . Suppose
that in the chain (8), gn : Yn → Yn+1 is an isomorphism for every
n ≥ N. Since the Ga-action on Xn is non trivial there exists an
open set Un of Yn such that q−1n (Un) ∼= Un × A1 and Ga acts
along the fiber A1. Since this is the case for qn+1 : Xn+1 → Yn+1,
we may assume that gn induces an open immersion Un ↪→ Un+1.
Then the fiberwise Ga-action induces an isomorphism of the fibers
of qn and qn+1. Hence fn is birational. This implies that fn is an
isomorphism by the Zariski Main Theorem.
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§4 Affine algebraic surfaces with κ ≥ 0

Let f : X → Y be a finite morphism of smooth affine surfaces.
Then there exist log smoooth completions V ,W of X ,Y such that
the morphism f extends to a morphism Φ : V →W with Φ|X = f
and Φ−1(∆) = D, where D = V −X and ∆ = W −Y . By the log
ramification formula, we have D + KV = Φ∗(∆ + KW ) + R, where
R is the log ramification divisor ≥ 0.

Lemma 4.1
R is supported by the union of curves C on V such that

(1) C is contracted by Φ (hence a component of D). The
component C of D has coefficient zero in R if C is a
component not contracted by Φ.

(2) C ∩ X 6= ∅ and Φ|C : C → Φ(C ) is ramified.

(3) If a component C of D has coefficient zero in R and C is
contracted by Φ, then it is contracted to an intersection point
of two irreducible components of ∆.
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Write the log ramification divisor R as R = R1 + R2, where R1 is
the sum of irreducible components meeting X and R2 is the sum of
componets of D. Since R2 is contracted by Φ, mR2 is in the base
locus of the linear system |m(D + KV )| for ∀m > 0.

Lemma 4.2
Suppose that dim |m(D + KV )| = dim |m(∆ + KW )| > 0 for some
positive integer m, then mR1 is contained in the base locus of
|m(D + KV )|. The converse also holds. Hence this condition
depends only on the minimal log smooth completions of X and Y .

Proof.
It is clear because
|m(D + KV )| = |Φ∗(m(∆ + KW )) + mR1 + mR2| =
|Φ∗(m(∆ + KW )) + mR1| = Φ∗(|m(∆ + KW )|), where
Φ∗(|m(∆ + KW )|) is the set of pull-backs by Φ of all members of
|m(∆ + KW )|. The assumption implies that the movable part of
|m(D + KV )| comes from the one for Φ∗(|m(∆ + KW )|).
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Let (V0,D0) be a minimal log smooth completion of X obtained
by the contraction σV : V → V0 and let (W0,∆0) be a minimal
log smooth completion of Y obtained by σW : W →W0. Then
Φ0 := σW ◦ Φ ◦ σV−1 : V0 99KW0 is a dominant rational map
which restricts to f : X → Y . Then
dim |m(D0 + KV0)| = dim |m(D + KV )| and
dim |m(∆0 + KW0)| = dim |m(∆ + KW )|. Hence
dim |m(D0 + KV0)| = dim |m(∆0 + KW0)| if and only if
dim |m(D + KV )| = dim |m(∆ + KW )|.

Theorem 4.3
Let the chain (1) consist of smooth affine surfaces of the same log
Kodaira dimension κ(Xi ) ≥ 0 and (Vi ,Di ) be a minimal log smooth
completion of Xi for every i . Then the following assertions hold.

(1) If κ(Xi ) = 2 then (DCC ) holds for (1).

(2) If κ(Xi ) = 0 or 1 then either (DCC ) holds or χ(Xi ) = 0 for
i � 0.
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Proof.
By Tsunoda, dim |m(Di + KVi

)| ≥ 0 for m ≥ 12 and every i .
Further, dim |m(Di + KVi

)| ≥ dim |m(Di+1 + KVi+1
)| for every i .

So, we may assume that
dim |m(Di + KVi

)| = dim |m(Di+1 + KVi+1
)| for all i ≥ 1. Let R1i

be the log ramification divisor of V1 99K Vi whose components
have nonempty intersection with X1. By Lemma 4.2, the divisor
mR1i is contained in the base locus of |m(D1 + KV1)|.
Furthermore, if j ≥ i then mR1j ≥ mR1i . Since mR1i is bounded
by the base locus of |m(D1 + KV1)|, mR1n = mR1N for ∀n ≥ ∃N.
Hence fn : Xn → Xn+1 is étale for n ≥ N. Then
χ(Xn) = (deg fn)χ(Xn+1) = deg fn)(deg fn+1)χ(Xn+2) = · · · . If
κ(Xi ) = 2 then χ(Xn) > 0. Hence deg fn = deg(fn+1) = · · · = 1.
Then fn is birational and hence an isomorphism. If κ(Xn) = 0 or 1
and the (DCC) fails, we must have χ(Xn) = 0.
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Theorem 4.3 can be generalized to the higher-dimensional case.
The proof is essentially the same as in the surface case.

Theorem 4.4
Let the chain (1) be a descending chain of smooth quasi-projective
varieties of the same log Kodaira dimension κ(Xi ) ≥ 0 and let
(Vi ,Di ) be a log smooth completion of Xi for every i . Suppose
that there exists an integer m0 such that |m0(Di + KVi

)| 6= ∅ for all
i . If χ(Xi ) > 0 for all i , then the (DCC ) holds.
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§5 Del Pezzo surfaces

Lemma 5.1
Let ϕ : V →W be a finite morphism of del Pezzo surfaces with
degree d ≥ 1 . Then we have.

(1) ρ(V ) ≥ ρ(W ).

(2) Suppose ρ(V ) = ρ(W ) and V 6∼= F0. We keep this assumption
except for (6). Then, for any (−1)-curve E on W ,
ϕ∗(E ) = mC with a (−1)-curve C on V , where d = m2 and
ϕ|C : C → E is a finite morphism of degree m.

(3) Let R be the ramification divisor for ϕ. Then
R ≥

∑
E (m − 1)E .

(4) d = 1 and ϕ is an isomorphism if ρ(V ) ≥ 5.

(5) If ρ(V ) ≤ 4 then ϕ is induced by a finite endomorphism of P2

of degree d = m2.

(6) Suppose V ∼= F0. Then V has an endomorphism of arbitrary
degree d > 1.
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Proof of (1), (2), (3)
(1) By the projection formula, the natural homomorphism
Pic (W )⊗Q→ Pic (V )⊗Q is injective. Hence ρ(W ) ≤ ρ(V ).
(2) For a (−1)-curve C on W , ϕ−1(C ) is a divisor with
negative-definite intersection form (Hodge index theorem). So,
each component E of ϕ−1(C ) is a (−1)-curve because (E 2) < 0.
If ϕ−1(C ) ≥ E + E ′ with E 6= E ′ then E ∩ E ′ = ∅, for otherwise
(E + E ′)2 ≥ 0. Further, E and E ′ are numerically independent in
Pic (V ). Hence ρ(V ) ≥ ρ(W ) + 1, which contradicts the
assumption. So, ϕ∗(C ) = mE and (m − 1)E is contained in the
ramification locus R. Let s be the degree of ϕ|E : E → C which is
a cyclic covering. Then (ϕ∗(C )2) = (ϕ∗ϕ

∗(C ) · C ) =
(ϕ∗(mE ) · C ) = m(sC · C ) = −ms = −d and
(ϕ∗(C )2) = m2(E 2) = −m2. Hence s = m and d = m2.
(3) Since ρ(V ) = ρ(W ), the number of (−1)-curves in V and W
is the same. So, each (−1)-curve E in V is the reduced inverse
image ϕ−1(C ) with a (−1)-curve C in W . So, R contains a divisor
(m − 1)

∑
E E , which is the sum of all (−1)-curves in V .
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Proof of (4)
(4) Let V ∼= Vn := BlP1,...,PnPn. Assume that n ≥ 2 so that there
exists a (−1)-curve which is the proper transform of a line ` on P2.
Then we can choose mutually disjoint (−1)-curves Ei (1 ≤ i ≤ n)
such that the contraction, say σ, of the Ei maps V to P2. This is
the case for W and mutually disjoint (−1)-curves Ci (1 ≤ i ≤ n),
where Ci = ϕ(Ei ). Let τ be the contraction of the Ci . Then ϕ
induces a finite morphism ψ : P2 → P2 of degree m2 such that
τ ◦ ϕ = ψ ◦ σ. Let ` (resp. L) be a line on the source (resp.
target) P2 whose proper transform σ′(`) (resp. τ ′(L)) on V (resp.
W ) is a (−1)-curve. We may assume that ψ(`) = L. Let N be the
number of (−1)-curves on Vn. Since KV ∼ ϕ∗(KW ) + R, we have
KP2 ∼ ψ∗(KP2) + S , where S = σ∗(R) is the ramification locus of
ψ and S contains the sum of images of (−1)-curves E on V with
coefficient m − 1. Since ψ∗(KP2) = ψ∗(−3L) and the ramification
index of ` over L is equal to m by the above choice of ` and L, we
have KP2 ∼ −3` and ψ∗(KP2) ∼ ψ∗(−3L) = −3m`, whence
−3` ∼ −3m`+ S with S ≥ (m − 1)N1`, where N1 is the number
of (−1)-curves in V which come from lines on P2. 26 / 28



Proof of (4) continued, (5), (6)
Hence we have

3(m − 1) ≥ (m − 1)N1. (10)

We have the following list

n 0 1 2 3 4 5 6 7 8

(K 2
V ) 9 8 7 6 5 4 3 2 1

N1 0 0 1 3 6 10 15 21 28

N 0 1 3 6 10 16 27 56 240

By the table and the equation (10), m = 1 if n ≥ 4. Namely ϕ is
an isomorphism.
(5) By the argument in (4), if ρ(V ) ≤ 4, then V is obtained from
P2 by blowing up at most three points. The assertion follows
immediately.
(6) Since P1 has a finite endomorphism αm of degree m,
(X0,X1) 7→ (Xm

0 ,X
m
1 ). So, F0 has an endomorphism αm × αn.
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The following theorem follows from Lemma 5.1.

Theorem 5.2
Let

V1
ϕ1−→ V2 −→ · · · · · · −→ Vn

ϕn−→ Vn+1 −→ · · ·

be a descending chain of del Pezzo surfaces with the same Picard
number ρ(Vi ) = ρ. If 5 ≤ ρ ≤ 9, the chain satisfies the (DCC ). If
1 ≤ ρ ≤ 4 the chain does not necessarily satisfy the (DCC ).
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