

Détermination explicite de graines pour la structure amassée associée aux variétés de Richardson Ouvertes

Colloque Tournant TLAG

Etienne MÉNARD 18 Mars 2022

Institut Fourier Université Grenoble Alpes

Introduction

Article : Cluster algebras associated with open Richardson varieties : an algorithm to compute initial seeds, arXiv :2201.10292

Algèbre amassée : Définition 00' par Fomin et Zelevinsky [FZ02]

Introduction

Article : Cluster algebras associated with open Richardson varieties : an algorithm to compute initial seeds, arXiv :2201.10292

Algèbre amassée : Définition 00' par Fomin et Zelevinsky [FZ02]

Motivation initiale : étude de la base canonique duale de Lusztig sur les groupes quantiques dans l'idée de généraliser à d'autres types de structures.

Introduction

Article: Cluster algebras associated with open Richardson varieties: an algorithm to compute initial seeds, arXiv:2201.10292

Algèbre amassée : Définition oo' par Fomin et Zelevinsky [FZ02]

Motivation initiale : étude de la base canonique duale de Lusztig sur les groupes quantiques dans l'idée de généraliser à d'autres types de structures.

Qu'est-ce qu'une algèbre amassée? Un anneau unitaire intègre commutatif possédant une famille particulière de générateurs; les variables d'amas.

Et concrètement? Comment on en calcule? A-t-on des algorithmes?

Quel est le rôle joué par la théorie de Lie dans ces algorithmes?

Plan

Algèbres amassées

Exemple prototypique

Formalisation

Algèbres amassées associées aux variétés de Richardson ouvertes

Catégorification additive

Structure amassée sur $mod(\Lambda)$

Structure amassée associée aux variétés de Richardson ouvertes

Δ-coordonnées et théorie de Lie

Introduction aux Δ -coordonnées

Lien avec la théorie des représentations des algèbres de Lie

Algèbres amassées

Algèbres amassées

Exemple prototypique

Totale positivité sur les matrices

Définition

Une matrice $M \in M_n(\mathbb{R})$ est dite totalement (strictement) positive si tous ses mineurs sont strictement positifs.

Totale positivité sur les matrices

Définition

Une matrice $M \in M_n(\mathbb{R})$ est dite totalement (strictement) positive si tous ses mineurs sont strictement positifs.

Pour tester la totale positivité : calculer tous les mineurs? Facile mais long et redondant.

Idée : utiliser des relations

Exemple:
$$M \in M_2(\mathbb{R})$$
. $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

5 mineurs : a, b, c, d, Δ . Pas besoin de calculer les 5 pour avoir la totale positivité

Comme $\Delta=ad-bc$, $a=\frac{\Delta+bc}{d}$ ou $d=\frac{\Delta+bc}{a}$, positivité totale avec 4 mineurs.

Totale positivité sur les matrices

Définition

Une matrice $M \in M_n(\mathbb{R})$ est dite totalement (strictement) positive si tous ses mineurs sont strictement positifs.

Pour tester la totale positivité : calculer tous les mineurs? Facile mais long et redondant.

Idée : utiliser des relations

Exemple:
$$M \in M_2(\mathbb{R})$$
. $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

5 mineurs : a, b, c, d, Δ . Pas besoin de calculer les 5 pour avoir la totale positivité

Comme $\Delta=ad-bc$, $a=rac{\Delta+bc}{d}$ ou $d=rac{\Delta+bc}{a}$, positivité totale avec 4 mineurs.

Famille minimale pour positivité totale : amas, chacun des mineurs : variable de l'amas.

Ici deux amas : $\{a, b, c, \Delta\}$ et $\{b, c, d, \Delta\}$.

Deux amas diffèrent d'une variable, obtenue comme fraction rationnelle en les variables de l'autre amas et même plus : polynôme de Laurent

Algèbres amassées

Formalisation

Graine

Définition

Soit $m \ge n > 0$ et $\mathcal{F} = \mathbb{Q}(y_1, \dots, y_m)$. Une graine (de type géométrique) dans \mathcal{F} est la paire (\tilde{x}, Γ) :

- un amas $\tilde{x}=\{x_1,\ldots,x_m\}\subset\mathcal{F}$ famille algébriquement libre qui engendre \mathcal{F} où
 - $x_i, i \leq n$: variables d'amas
 - $x_i, i > n$: variables gelées
- carquois Γ : graphe orienté sans 2-cycles, sommets indexés par \tilde{x} , défini aux flèches entre sommets gelés près

Graine

Définition

Soit $m \ge n > 0$ et $\mathcal{F} = \mathbb{Q}(y_1, \dots, y_m)$. Une graine (de type géométrique) dans \mathcal{F} est la paire (\tilde{x}, Γ) :

- un amas $\tilde{x}=\{x_1,\ldots,x_m\}\subset\mathcal{F}$ famille algébriquement libre qui engendre \mathcal{F} où
 - $x_i, i \leq n$: variables d'amas
 - x_i , i > n: variables gelées
- carquois Γ : graphe orienté sans 2-cycles, sommets indexés par \tilde{x} , défini aux flèches entre sommets gelés près

Algèbre amassée : étude de l'ensemble des amas, comment les obtenir à partir d'une graine ? Opération de mutation :

Mutation d'amas

Mutation de \tilde{x} dans la direction $1 \le k \le n$: μ_k : (variables gelées non-mutable)

$$\tilde{\textbf{x}} = \{\textbf{x}_1, \dots, \textbf{x}_{k-1}, \textbf{x}_k, \textbf{x}_{k+1}, \dots, \textbf{x}_m\} \mapsto \mu_k(\tilde{\textbf{x}}) = \{\textbf{x}_1, \dots, \textbf{x}_{k-1}, \textbf{x}_k^*, \textbf{x}_{k+1}, \dots, \textbf{x}_m\}$$

οù

$$x_k^* = \frac{\prod_{b_{i,k}>0} x_i^{b_{i,k}} + \prod_{b_{i,k}<0} x_i^{-b_{i,k}}}{x_k}$$

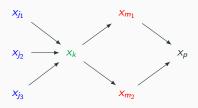
où
$$b_{i_k} = \operatorname{Card}\{i \mid (x_i \to x_k) \in \Gamma\} - \operatorname{Card}\{i \mid (x_k \to x_i) \in \Gamma\}$$

Mutation d'amas

Mutation de \tilde{x} dans la direction $1 \le k \le n$:

$$x_k^* = \frac{\prod_{b_{i,k}>0} x_i^{b_{i,k}} + \prod_{b_{i,k}<0} x_i^{-b_{i,k}}}{x_k}$$

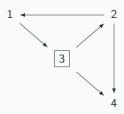
où
$$b_{i_k} = \operatorname{Card}\{i \mid (x_i \to x_k) \in \Gamma\} - \operatorname{Card}\{i \mid (x_k \to x_i) \in \Gamma\}$$



On a
$$x_k^* = \frac{x_{j_1}x_{j_2}x_{j_3} + x_{m_1}x_{m_2}}{x_k}$$

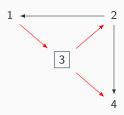
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ, rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



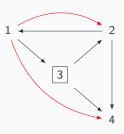
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ, rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



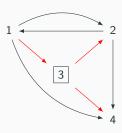
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ, rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



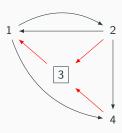
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ , rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



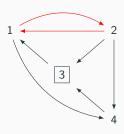
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ , rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



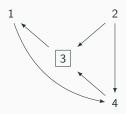
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ , rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



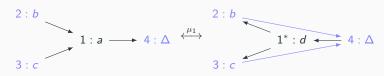
Mutation de carquois

- 1. Pour chaque suite de flèches $i \to k \to j$ dans Γ , rajouter une flèche $i \to j$ dans $\mu_k(\Gamma)$
- 2. Inverser toutes les flèches adjacentes à x_k
- 3. Supprimer les 2-cycles éventuels



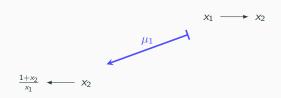
Exemple prototypique

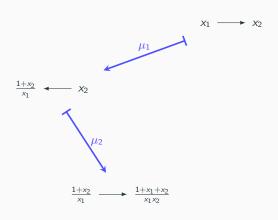
On a deux graines:

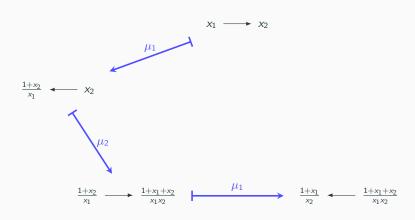


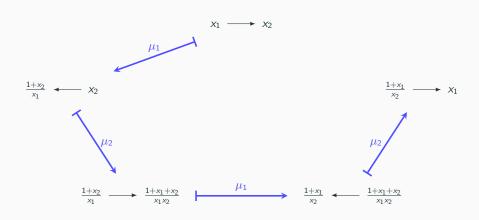
οù

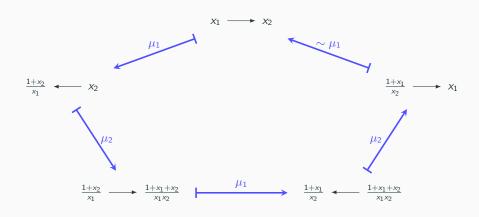
$$d = \frac{bc + \Delta}{a}, \ a = \frac{bc + \Delta}{d}$$











Algèbre amassée

Algèbre amassée

Étant donné une graine (\tilde{x}, Γ) où c est l'ensemble des variables gelées, l'algèbre amassée associée à (\tilde{x}, Γ) est la sous- $\mathbb{Z}[\mathbf{c}^{\pm 1}]$ -algèbre de \mathcal{F} engendrée par l'ensemble des variable d'amas obtenus par mutation successives de (\tilde{x}, Γ) .

Algèbre amassée

Algèbre amassée

Étant donné une graine (\tilde{x}, Γ) où c est l'ensemble des variables gelées, l'algèbre amassée associée à (\tilde{x}, Γ) est la sous- $\mathbb{Z}[\mathbf{c}^{\pm 1}]$ -algèbre de \mathcal{F} engendrée par l'ensemble des variable d'amas obtenus par mutation successives de (\tilde{x}, Γ) .

Exemple prototypique

L'algèbre amassée est la sous- $\mathbb{Z}[b^{\pm 1},c^{\pm 1},\Delta^{\pm 1}]$ -algèbre de $\mathbb{Q}(a,b,c,d,\Delta)$ engendrée par a et d.

Exemple A_2

L'algèbre amassée est la sous-algèbre de $\mathbb{Q}(x_1,x_2)$ engendrée par

$$\left\{x_1, x_2, \frac{1+x_2}{x_1}, \frac{1+x_1}{x_2}, \frac{1+x_1+x_2}{x_1x_2}\right\}.$$

Algèbres amassées associées aux variétés

Algèbres amassées

de Richardson ouvertes

Non-négativité

Définition

Une matrice $M \in M_n(\mathbb{R})$ est dite totalement non-négative si chacun de ses mineurs est positif ou nul.

Non-négativité

Définition

Une matrice $M \in M_n(\mathbb{R})$ est dite totalement non-négative si chacun de ses mineurs est positif ou nul.

Dans [FZ99] étude des matrices inversibles totalement positives $GL_n(\mathbb{R})_{\geq 0}$ par les cellules de Bruhat doubles (cf après), dans [Lus94] étude de la totale non-négativité sur les groupes réductifs.

Non-négativité

Définition

Une matrice $M \in M_n(\mathbb{R})$ est dite totalement non-négative si chacun de ses mineurs est positif ou nul.

Dans [FZ99] étude des matrices inversibles totalement positives $GL_n(\mathbb{R})_{\geq 0}$ par les cellules de Bruhat doubles (cf après), dans [Lus94] étude de la totale non-négativité sur les groupes réductifs.

En fait partie totalement non-négative = réunion des parties totalement positives de chacun des cellules de Bruhat double.

Si $G^{v,w}$ cellule de Bruhat double : $\mathbb{C}[G^{v,w}]$ possède une algèbre amassée. Amas = critère de positivité.

On va élargir cette question.

Élargissement du cadre

Question initiale : totale non-négativité sur $GL_n(\mathbb{R}):GL_n(\mathbb{R})_{\geq 0}$

Élargissement du cadre

Question initiale : totale non-négativité sur $GL_n(\mathbb{R})$: $GL_n(\mathbb{R})_{\geq 0}$

Mais $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ sous variété affine de Gr(2n, n).

Espoir : comprendre $Gr(2n, n)_{\geq 0}$ de la même façon que $GL_n(\mathbb{R})_{\geq 0}$ par stratification.

Élargissement du cadre

Question initiale : totale non-négativité sur $GL_n(\mathbb{R})$: $GL_n(\mathbb{R})_{\geq 0}$

Mais $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$ sous variété affine de Gr(2n, n).

Espoir : comprendre $Gr(2n, n)_{\geq 0}$ de la même façon que $GL_n(\mathbb{R})_{\geq 0}$ par stratification.

Aller plus loin : comprendre n'importe quelle variété de drapeaux

Approche utilisée : voir les variétés de drapeaux comme quotients de groupes algébriques

G est un $\mathbb C$ -groupe algébrique simple, simplement connexe, de type A,D ou E de diagramme de Dynkin associé Δ

Exemple

$$G = SL_{n+1}(\mathbb{C})$$
 $\Delta = 1 - 2 - \cdots - n-1 - n$

G est un \mathbb{C} -groupe algébrique simple, simplement connexe, de type A,D ou E de diagramme de Dynkin associé Δ

H tore maximal, $B \supset H$, sous-groupe de Borel, B^- sous-groupe de Borel opposé, N radical unipotent maximal de B.

Exemple

$$G = SL_{n+1}(\mathbb{C})$$
 $\Delta = 1 - 2 - \cdots - n-1 - n$

H matrices diagonales, B matrices triangulaires supérieures, B^- matrices triangulaires inférieures, N matrices unitriangulaires supérieures

G est un $\mathbb{C}\text{-groupe}$ algébrique simple, simplement connexe, de type A,D ou E de diagramme de Dynkin associé Δ

H tore maximal, $B \supset H$, sous-groupe de Borel, B^- sous-groupe de Borel opposé, N radical unipotent maximal de B.

Variété de drapeau : $X = B^- \setminus G$

Groupe de Weyl de $G: W = Norm_G(H)/H$

Exemple

$$G = SL_{n+1}(\mathbb{C})$$
 $\Delta = 1 - 2 - \cdots - n-1 - n$

 ${\cal H}$ matrices diagonales, ${\cal B}$ matrices triangulaires supérieures, ${\cal B}^-$ matrices triangulaires inférieures, ${\cal N}$ matrices unitriangulaires supérieures

X variété de drapeau complets de type A_n

W groupe de Weyl de type A_n

$$(\langle s_1,\ldots,s_n \mid s_i^2 = e, s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}, s_i s_j = s_j s_i \text{ si } |i-j| > 1 \rangle).$$

Comment trouver une stratification adaptée à l'étude de $X_{\geq 0}$? En faisant comme avec $GL_{n+1}(\mathbb{R})_{\geq 0}$ vu comme $G_{\geq 0}$.

Comment trouver une stratification adaptée à l'étude de $X_{\geq 0}$? En faisant comme avec $\mathrm{GL}_{n+1}(\mathbb{R})_{\geq 0}$ vu comme $G_{\geq 0}$.

G a deux décompositions :

- de Bruhat $G = \bigsqcup_{w \in W} B^- w B^-$
- de Birkhoff $G = \bigsqcup_{w \in W} B^- wB$

Comment trouver une stratification adaptée à l'étude de $X_{\geq 0}$? En faisant comme avec $GL_{n+1}(\mathbb{R})_{\geq 0}$ vu comme $G_{\geq 0}$.

G a deux décompositions :

- de Bruhat $G = \bigsqcup_{w \in W} B^- w B^-$
- de Birkhoff $G = \bigsqcup_{w \in W} B^- wB$

Quotient
$$\pi: G \to B^- \backslash G = X$$

Image des décompositions :

· Décomposition en cellules de Schubert

$$G = \bigsqcup_{w \in W} C_w = \bigsqcup_{w \in W} \pi(B^- w B^-)$$

· Décomposition en cellules de Schubert opposées

$$G = \bigsqcup_{w \in W} C^w = \bigsqcup_{w \in W} \pi(B^- wB)$$

décomposition de X

Variété de Richardson ouverte

Définition

On appelle variété de Richardson ouverte l'intersection

$$\mathcal{R}_{v,w} = C_w \cap C^v, \quad v,w \in W$$

On a $\mathcal{R}_{v,w} \neq \emptyset \Leftrightarrow v \leq w$ pour l'ordre de Bruhat.

Variété de Richardson ouverte

Définition

On appelle variété de Richardson ouverte l'intersection

$$\mathcal{R}_{v,w} = C_w \cap C^v, \quad v,w \in W$$

On a $\mathcal{R}_{v,w} \neq \emptyset \Leftrightarrow v \leq w$ pour l'ordre de Bruhat.

Dans [FZ99], Fomin et Zelevinsky étudie $G_{\geq 0}$ via une structure d'algèbre amassée sur $\mathbb{C}[G^{v,w}]$ où $G^{v,w}$ cellule de Bruhat double (= $BvB \cap B^-wB^-$).

Pareil sur $\mathbb{C}[\mathcal{R}_{\nu,w}]$: mais comment définir une algèbre amassée? Graine? Mais comment l'obtenir?

Principe

On va associer les éléments de l'algèbre amassée sur $\mathbb{C}[\mathcal{R}_{v,w}]$ à des éléments d'une catégorie sur laquelle on a une combinatoire équivalente à celle des algèbres amassées

Principe

On va associer les éléments de l'algèbre amassée sur $\mathbb{C}[\mathcal{R}_{\nu,w}]$ à des éléments d'une catégorie sur laquelle on a une combinatoire équivalente à celle des algèbres amassées

Quelle catégorie?

Principe

On va associer les éléments de l'algèbre amassée sur $\mathbb{C}[\mathcal{R}_{\nu,w}]$ à des éléments d'une catégorie sur laquelle on a une combinatoire équivalente à celle des algèbres amassées

Quelle catégorie?

Quelle structure amassée?

Structure amassée sur mod(Λ)

Construction de Λ

 Δ : diagramme de Dynkin du groupe algébrique G et du groupe de Weyl W de type A_n , D_n ou E_n .

Construction de A

 Δ : diagramme de Dynkin du groupe algébrique G et du groupe de Weyl W de type A_n, D_n ou E_n .

 $Q=(Q_0,Q_1)$ carquois : orientation de Δ $Q_0=\{1,\ldots,n\}$: ensemble des sommets, Q_1 : ensemble des arêtes

Construction de A

 Δ : diagramme de Dynkin du groupe algébrique G et du groupe de Weyl W de type A_n, D_n ou E_n .

 $Q=(Q_0,Q_1)$ carquois : orientation de Δ $Q_0=\{1,\ldots,n\}$: ensemble des sommets, Q_1 : ensemble des arêtes

 \overline{Q} : double carquois : pour chaque $\alpha \in Q_1$, α^* parallèle et de sens opposé.

Construction de A

 Δ : diagramme de Dynkin du groupe algébrique G et du groupe de Weyl W de type A_n, D_n ou E_n .

 $Q=(Q_0,Q_1)$ carquois: orientation de Δ $Q_0=\{1,\ldots,n\}$: ensemble des sommets, Q_1 : ensemble des arêtes

 \overline{Q} : double carquois : pour chaque $\alpha \in Q_1$, α^* parallèle et de sens opposé.

 $\mathbb{C}\overline{Q}$: algèbre des chemins sur \overline{Q}

c = un élément de $\mathbb{C}\overline{Q}$

$$c = \sum_{\alpha \in Q_1} \alpha \alpha^* - \alpha^* \alpha$$

Construction de Λ

 Δ : diagramme de Dynkin du groupe algébrique G et du groupe de Weyl W de type A_n, D_n ou E_n .

 $Q=(Q_0,Q_1)$ carquois : orientation de Δ $Q_0=\{1,\ldots,n\}$: ensemble des sommets, Q_1 : ensemble des arêtes

 \overline{Q} : double carquois : pour chaque $\alpha \in Q_1$, α^* parallèle et de sens opposé.

 $\mathbb{C}\overline{Q}$: algèbre des chemins sur \overline{Q}

c = un élément de $\mathbb{C}\overline{Q}$

$$c = \sum_{\alpha \in Q_1} \alpha \alpha^* - \alpha^* \alpha$$

 Λ : quotient $\mathbb{Q}\overline{\mathbb{Q}}/(c)$: algèbre préprojective, de dimension finie.

Éléments de $mod(\Lambda)$

- $mod(\Lambda)$: catégorie des Λ -modules de dimension finie
- S_i : Λ -module simple de dimension 1 $\overset{1:1}{\leftrightarrow}$ $i \in Q_0$

Éléments de $mod(\Lambda)$

- $mod(\Lambda)$: catégorie des Λ -modules de dimension finie
- S_i : Λ -module simple de dimension 1 $\overset{1:1}{\leftrightarrow}$ $i \in Q_0$

Catégories C_w et C^v : sous-catégories pleines de $\operatorname{mod}(\Lambda)$, fermées par extensions, fonctoriellement finies, « $\operatorname{modèles}$ catégoriques » de C_w et C^v

Éléments de $mod(\Lambda)$

- $mod(\Lambda)$: catégorie des Λ -modules de dimension finie
- S_i : Λ -module simple de dimension 1 $\overset{1:1}{\leftrightarrow}$ $i \in Q_0$

Catégories C_w et C^v : sous-catégories pleines de $\operatorname{mod}(\Lambda)$, fermées par extensions, fonctoriellement finies, « $\operatorname{modèles}$ catégoriques » de C_w et C^v

Si $v \le w$ pour l'ordre de Bruhat :

$$\mathcal{C}_{v,w}=\mathcal{C}^v\cap\mathcal{C}_w$$

Modèle catégorique de $\mathcal{R}_{v,w}$

Analogue en théorie des catégorie de l'algèbre amassée sur les espaces vectoriels [BIRS09] (Buan, Iyama, Reiten, Scott]. Théorie plus générale que le cas particulier vu ici.

Analogue en théorie des catégorie de l'algèbre amassée sur les espaces vectoriels [BIRS09] (Buan, Iyama, Reiten, Scott]. Théorie plus générale que le cas particulier vu ici.

Graine de C [BIRS09, GLS11]

 $\mathcal C$ sous-catégorie de mod (Λ) , fermée par extensions, fonctoriellement finie. V module $\mathcal C$ -rigide maximal basique, décomposition facteurs directs

indécomposables :
$$V = \bigoplus_{i=1}^{n} V_i$$

Analogue en théorie des catégorie de l'algèbre amassée sur les espaces vectoriels [BIRS09] (Buan, Iyama, Reiten, Scott]. Théorie plus générale que le cas particulier vu ici.

Graine de C [BIRS09, GLS11]

 $\mathcal C$ sous-catégorie de mod(Λ), fermée par extensions, fonctoriellement finie. V module $\mathcal C$ -rigide maximal basique, décomposition facteurs directs

indécomposables :
$$V = \bigoplus_{i=1}^{n} V_i$$

Graine associée à *V* :

- Amas $\tilde{x} = \{V_1, ..., V_n\}$
 - Facteurs $\mathcal C$ -projectifs(-injectifs) : variables gelées
 - · Autres facteurs : variables d'amas

Analogue en théorie des catégorie de l'algèbre amassée sur les espaces vectoriels [BIRS09] (Buan, Iyama, Reiten, Scott]. Théorie plus générale que le cas particulier vu ici.

Graine de C [BIRS09, GLS11]

 $\mathcal C$ sous-catégorie de mod(Λ), fermée par extensions, fonctoriellement finie. V module $\mathcal C$ -rigide maximal basique, décomposition facteurs directs

$$\mathsf{ind\'ecomposables} : V = \bigoplus_{i=1}^n V_i$$

Graine associée à V:

- Amas $\tilde{x} = \{V_1, \ldots, V_n\}$
 - Facteurs C-projectifs(-injectifs): variables gelées
 - · Autres facteurs : variables d'amas
- Carquois : carquois Γ_V de l'algèbre $\operatorname{End}_{\Lambda}(V)$

Mutation de graines de $\mathcal C$

- Mutation de carquois $\Gamma = (\Gamma_0, \Gamma_1)$: comme d'habitude
- Mutation de modules dans la direction k (V_k non-injectif-projectif): à l'aide de suites exactes courtes selon l'entourage du sommet dans le carquois

$$0 o V_k o igoplus_{\substack{lpha \in \Gamma_1 \ s(lpha) = k}} oldsymbol{V_{t(lpha)}} o V_k^*$$
 $0 o V_k^* o igoplus_{\substack{lpha \in \Gamma_1 \ t(lpha) = k}} oldsymbol{V_{s(lpha)}} o V_k$

Caractère d'amas

Lien $C_w \leftrightarrow C_w$ (et plus généralement mod $(\Lambda) \leftrightarrow \mathbb{C}[N]$) passe par le caractère d'amas : $\forall M \in \text{mod}(\Lambda), \varphi_M \in \mathbb{C}[N]$.

Structure amassée associée aux variétés

Catégorification additive

de Richardson ouvertes

Structure amassée associée aux variétés de Richardson ouvertes

Première étape : définir une structure amassée sur $\mathcal{C}_{v,w}$

Théorème [M. 2021]

Il existe un algorithme explicite permettant de donner une graine pour la structure amassée de $C_{v,w}$ à partir d'un représentant réduit \overline{w} de w et de l'élément $v \in W$

Structure amassée associée aux variétés de Richardson ouvertes

Première étape : définir une structure amassée sur $\mathcal{C}_{\nu,w}$

Théorème [M. 2021]

Il existe un algorithme explicite permettant de donner une graine pour la structure amassée de $\mathcal{C}_{v,w}$ à partir d'un représentant réduit \overline{w} de w et de l'élément $v \in W$

Ensuite : prouver que l'image par φ d'une graine donne bien une graine de $\mathbb{C}[\mathcal{R}_{\nu,w}]$ (conjecture de Leclerc).

Etat : quasiment fini, travaux de Keller, encore une subtilité à lever.

Principe: partir d'une graine G pour C_w (cf après)

$$R_0 = V_{\overline{w}} = (R_{1,0}, R_{2,0}, R_{3,0}, R_{4,0}, R_{5,0}, R_{6,0})$$

.

Principe : partir d'une graine G pour C_w (cf après) et faire une suite de mutations dictée par la combinatoire de \overline{v} dans \overline{w} . Arriver à une graine $\mu_{\ell(v)} \circ \cdots \circ \mu_1(G)$

$$R_0 = V_{\overline{w}} = (R_{1,0}, R_{2,0}, R_{3,0}, R_{4,0}, R_{5,0}, R_{6,0})$$

$$\mu_{\ell(v)} \circ \cdots \circ \mu_1$$

$$\vdots$$

$$R_{\ell(v)} = (R_{1,\ell(v)}, R_{2,\ell(v)}, R_{3,\ell(v)}, R_{4,\ell(v)}, R_{5,\ell(v)}, R_{6,\ell(v)})$$

21/32

Principe: partir d'une graine G pour \mathcal{C}_w (cf après) et faire une suite de mutations dictée par la combinatoire de \overline{v} dans \overline{w} . Arriver à une graine $\mu_{\ell(v)} \circ \cdots \circ \mu_1(G)$: garder uniquement les facteurs dans $\mathcal{C}_{v,w}$: on obtient un module $\mathcal{C}_{v,w}$ -rigide maximal basique, un amas pour la structure amassée sur $\mathcal{C}_{v,w}$.

$$R_{0} = V_{\overline{w}} = (R_{1,0}, R_{2,0}, R_{3,0}, R_{4,0}, R_{5,0}, R_{6,0})$$

$$\downarrow^{\mu_{\ell(v)} \circ \cdots \circ \mu_{1}} \qquad \vdots$$

$$R_{\ell(v)} = (R_{1,\ell(v)}, R_{2,\ell(v)}, R_{3,\ell(v)}, R_{4,\ell(v)}, R_{5,\ell(v)}, R_{6,\ell(v)})$$

$$\downarrow^{S}$$

$$\mu_{\bullet}(V_{\overline{w}}) = (R_{1,\ell(v)}, R_{2,\ell(v)}, R_{3,\ell(v)}, R_{4,\ell(v)}, R_{5,\ell(v)}, R_{6,\ell(v)})$$

Principe: partir d'une graine G pour C_w (cf après) et faire une suite de mutations dictée par la combinatoire de \overline{v} dans \overline{w} . Arriver à une graine $\mu_{\ell(v)} \circ \cdots \circ \mu_1(G)$: garder uniquement les facteurs dans $C_{v,w}$: on obtient un module $C_{v,w}$ -rigide maximal basique, un amas pour la structure amassée sur $C_{v,w}$.

$$R_{0} = V_{\overline{w}} = (R_{1,0}, R_{2,0}, R_{3,0}, R_{4,0}, R_{5,0}, R_{6,0})$$

$$\downarrow^{\mu_{\ell(v)} \circ \cdots \circ \mu_{1}} \qquad \vdots$$

$$R_{\ell(v)} = (R_{1,\ell(v)}, R_{2,\ell(v)}, R_{3,\ell(v)}, R_{4,\ell(v)}, R_{5,\ell(v)}, R_{6,\ell(v)})$$

$$\downarrow^{S}$$

$$\mu_{\bullet}(V_{\overline{w}}) = (R_{1,\ell(v)}, R_{2,\ell(v)}, R_{3,\ell(v)}, R_{4,\ell(v)}, R_{5,\ell(v)}, R_{6,\ell(v)})$$

Quid du carquois? La restriction du carquois convient!

Détermination de $G_{\overline{w}}$

Point de départ de notre algorithme : une graine de \mathcal{C}_w . Pas de moyen de toutes les décrire mais [GLS11] : description d'une famille de graines : données par les représentants \overline{w} .

Détermination de $G_{\overline{w}}$

Point de départ de notre algorithme : une graine de C_w . Pas de moyen de toutes les décrire mais [GLS11] : description d'une famille de graines : données par les représentants \overline{w} .

Modules : détermination des facteurs directs comme sous-modules de modules projectifs indécomposables. Module $V:\oplus$ des facteurs directs

Détermination de $G_{\overline{w}}$

Point de départ de notre algorithme : une graine de C_w . Pas de moyen de toutes les décrire mais [GLS11] : description d'une famille de graines : données par les représentants \overline{w} .

Modules : détermination des facteurs directs comme sous-modules de modules projectifs indécomposables. Module $V:\oplus$ des facteurs directs

Carquois : règle combinatoire pour connaître les flèches

∆-coordonnées et théorie de Lie

Principe

Pour représenter de façon univoque des modules rigides de $mod(\Lambda)$: utilisation d'un vecteur d'entiers naturels.

Avantages : mutations deviennent de simples calculs d'entiers, l'appartenance à C_w ou C^v se voit simplement

Inconvénients : traduction $mod(\Lambda) \leftrightarrow \mathbb{N}^n$ non-triviale

\triangle -coordonnées et théorie de Lie

Introduction aux ∆-coordonnées

Définitions

Première définition

Dans la graine $V_{\overline{w}}$ on a des inclusions entre facteurs directs : $V_k \subset V_{k^+}$. Permet de définir une nouvelle famille de modules : $M_k = V_{k^+}/V_k$.

Chaque V_j peut-être représenté par sa décomposition en modules $(M_k)_k$. Vecteur de multiplicité : $\Delta_{\overline{w}}$ -vecteur.

Définitions

Première définition

Dans la graine $V_{\overline{w}}$ on a des inclusions entre facteurs directs : $V_k \subset V_{k^+}$. Permet de définir une nouvelle famille de modules : $M_k = V_{k^+}/V_k$.

Chaque V_j peut-être représenté par sa décomposition en modules $(M_k)_k$. Vecteur de multiplicité : $\Delta_{\overline{w}}$ -vecteur.

Définition précise

Les modules standards de $\operatorname{End}_{\Lambda}(V_{\overline{w}})$ sont les $\Delta_k = \operatorname{Hom}(V_{\overline{w}}, M_k)$, $1 \leq k \leq \ell(w)$. Leurs vecteurs dimensions $\dim_{\operatorname{End}_{\Lambda}(V_{\overline{w}})}(\Delta_k)$ forment une famille linéairement indépendante. [GLS11, Sections 10 & 12].

 $\Delta_{\overline{w}}$ -vecteur de V_k : coordonnées de $\text{Hom}(V_{\overline{w}},V_k)$ dans la base formée par les modules standards.

Définitions

Première définition

Dans la graine $V_{\overline{w}}$ on a des inclusions entre facteurs directs : $V_k \subset V_{k^+}$. Permet de définir une nouvelle famille de modules : $M_k = V_{k^+}/V_k$.

Chaque V_j peut-être représenté par sa décomposition en modules $(M_k)_k$. Vecteur de multiplicité : $\Delta_{\overline{w}}$ -vecteur.

Définition précise

Les modules standards de $\operatorname{End}_{\Lambda}(V_{\overline{w}})$ sont les $\Delta_k = \operatorname{Hom}(V_{\overline{w}}, M_k)$, $1 \leq k \leq \ell(w)$. Leurs vecteurs dimensions $\dim_{\operatorname{End}_{\Lambda}(V_{\overline{w}})}(\Delta_k)$ forment une famille linéairement indépendante. [GLS11, Sections 10 & 12].

 $\Delta_{\overline{w}}$ -vecteur de V_k : coordonnées de $\text{Hom}(V_{\overline{w}},V_k)$ dans la base formée par les modules standards.

Propriétés

Tout module de \mathcal{C}_w possède un $\Delta_{\overline{w}}$ -vecteur pour tout \overline{w} représentant réduit de w. [GLS11, Lemme 10.2] Si deux modules rigides indécomposables ont le même $\Delta_{\overline{w}}$ -vecteur alors ils sont isomorphes. [GLS11, Corollaire 12.3]

Critère d'appartenance

Remarque : $\mathcal{C}_{w_0} = \operatorname{mod}(\Lambda) = \mathcal{C}^{w_0}$. $\dot{w} = [i_r, \dots, i_{\ell(w)+1}, \underbrace{i_{\ell(w)}, \dots, i_1}_{\overline{w}}]$ représentant réduit de w_0 . De même pour \dot{v} .

Critère d'appartenance

$$\mathsf{Remarque}: \mathcal{C}_{w_0} = \mathsf{mod}(\Lambda) = \mathcal{C}^{w_0}. \ \dot{w} = [\mathit{i_r}, \ldots, \mathit{i_{\ell(w)+1}}, \underbrace{\mathit{i_{\ell(w)}}, \ldots, \mathit{i_1}}_{\overline{w}}] \ \mathsf{représentant} \ \mathsf{r\'eduit}$$

de w_0 . De même pour \dot{v} .

Critère d'appartenance [M.]

M rigide indécomposable

$$\textit{M} \in \mathcal{C}_{\textit{w}} \Leftrightarrow \Delta_{\dot{\textit{w}}}(\textit{M}) = [\textit{n}_1, \ldots, \textit{n}_{\ell(\textit{w})}, 0, \ldots, 0]$$

$$M \in \mathcal{C}^{v} \Leftrightarrow \Delta_{\dot{v}}(M) = [0, \dots, 0, n_{\ell(v)+1}, \dots, n_r]$$

Remarque : algorithme de détermination : algorithme glouton partant de $V_{\overline{w}} \in \mathcal{C}_w$ et supprimant les premières coordonnées des $\Delta_{\dot{v}}$ -vecteurs

Critère d'appartenance : besoin d'un représentant de w_0 obtenu à partir de \overline{w} et un à partir de \overline{v} .

Critère d'appartenance : besoin d'un représentant de w_0 obtenu à partir de \overline{w} et un à partir de \overline{v} .

Calcul de $\Delta_{\overline{w}}(V_{\overline{w}})$: facile, simple règle combinatoire (provient de la définition).

Calcul de $\Delta_{\dot{w}}(V_{\overline{w}})$: rajouter $r - \ell(w)$ zéros à droite.

Critère d'appartenance : besoin d'un représentant de w_0 obtenu à partir de \overline{w} et un à partir de \overline{v} .

Calcul de $\Delta_{\overline{w}}(V_{\overline{w}})$: facile, simple règle combinatoire (provient de la définition).

Calcul de $\Delta_{\dot{w}}(V_{\overline{w}})$: rajouter $r - \ell(w)$ zéros à droite.

Calcul de $\Delta_{\overline{\nu}}(V_{\overline{w}})$: n'a pas de sens.

Calcul de $\Delta_{\dot{\nu}}(V_{\overline{w}})$: on ne sait a priori pas faire.

Critère d'appartenance : besoin d'un représentant de w_0 obtenu à partir de \overline{w} et un à partir de \overline{v} .

Calcul de $\Delta_{\overline{w}}(V_{\overline{w}})$: facile, simple règle combinatoire (provient de la définition).

Calcul de $\Delta_{\dot{w}}(V_{\overline{w}})$: rajouter $r - \ell(w)$ zéros à droite.

Calcul de $\Delta_{\overline{V}}(V_{\overline{W}})$: n'a pas de sens.

Calcul de $\Delta_{\dot{v}}(V_{\overline{w}})$: on ne sait a priori pas faire.

Façon "simple" d'avoir le résultat : \dot{v} et \dot{w} deux représentants de w_0 : suite de mouvements de réécritures élémentaires $\dot{v} \rightsquigarrow \dot{w}$ [Mat64]. Si $\dot{w} \rightsquigarrow \dot{v}$ par un 2 ou 3-mouvement : formule pour exprimer $\Delta_{\dot{\nu}}$ en fonction de $\Delta_{\dot{\nu}}$ [BKT14, SSVZ00].

Ensuite: itération pas par pas

Avantage: tout le vecteur est calculé. Inconvénient: pas de formule close ⇒ besoin d'une autre méthode.

∆-coordonnées et théorie de Lie

Lien avec la théorie des représentations

des algèbres de Lie

Polytopes

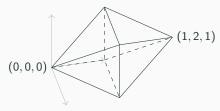
Polytope de Harder-Naramsimhan

L'enveloppe convexe des vecteurs dimensions de l'ensemble des sous-modules de $M \in \text{mod}(\Lambda)$ forme un polytope appelé polytope de Harder-Naramsimhan de M, noté Pol(M).

Polytopes

Par exemple pour M de décomposition de socle $M = 1 \frac{2}{3}$

Sous-module	0	2	1_2	2,3	1_3	1 2 3
Vecteur dimension	(0,0,0)	(0,1,0)	(1,1,0)	(0,1,1)	(1,1,1)	(1,2,1)



Donnée GGMS

 $\mathfrak g$ algèbre de Lie semi-simple de type A,D ou E, de sous-algèbre de Cartan $\mathfrak h$ et de groupe de Weyl associé W.

Une collection $\mu_{ullet}=(\mu_w)_{w\in W}$ d'éléments de $\mathfrak{h}_{\mathbb{R}}$ est dite de Gelfand-Goresky-MacPherson-Serganova si elle vérifie :

$$\mu_w - \mu_{s_i w} \in \mathbb{N}(w^{-1} \cdot h_i), \forall w \in W, i \in I$$

Etant donné $\overline{w_0} = [i_r, \dots, i_1]$ réduit, et $w = s_{i_{k-1}} \dots s_{i_1}$, on définit l'entier $n_k^{\overline{w_0}}$ vérifiant

$$\mu_{w} - \mu_{s_{i_{k}}w} = n_{k}^{\overline{w_{0}}}(s_{i_{1}}\cdots s_{i_{k-1}}h_{i_{k}})$$

Si on regarde le polytope formé par l'enveloppe convexe de μ_{\bullet} (pseudo-polytope de Weyl), c'est la longueur de l'arête entre les sommets w et $s_{i_k}w$.

Donnée de Mirković-Vilonen

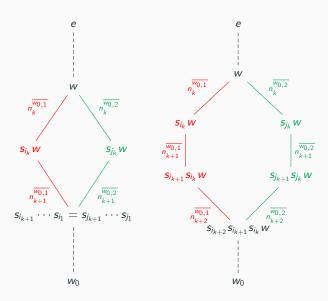
Une donnée GGMS est dite de Mirković-Vilonen si elle vérifie de plus les conditions suivantes. Pour tout représentants réduits $\overline{w_{0,1}} = [i_r, \dots, i_1]$ et $\overline{w_{0,2}} = [j_r, \dots, j_1]$

• si $\overline{w_{0,1}}$ et $\overline{w_{0,2}}$ diffèrent d'un 2-mouvement ($i_{k+1}=j_k$ et $i_k=j_{k+1}$) alors :

$$\textbf{\textit{n}}_{k}^{\overline{w_{0,1}}} = n_{k+1}^{\overline{w_{0,2}}}, \quad \textbf{\textit{n}}_{k+1}^{\overline{w_{0,1}}} = n_{k}^{\overline{w_{0,2}}}, \quad \textbf{\textit{n}}_{l}^{\overline{w_{0,1}}} = n_{l}^{\overline{w_{0,2}}} \ \forall l \notin \{k,k+1\}$$

• si $\overline{w_{0,1}}$ et $\overline{w_{0,2}}$ diffèrent d'un 3-mouvement ($i_{k+1}=j_k=j_{k+2}$ et $i_k=i_{k+2}=j_{k+1}$) alors :

$$\begin{split} \boldsymbol{n_{k}^{\overline{w_{0,1}}}} &= n_{k+1}^{\overline{w_{0,2}}} + n_{k+2}^{\overline{w_{0,2}}} - \min(n_k^{\overline{w_{0,2}}}, n_{k+2}^{\overline{w_{0,2}}}), \ \boldsymbol{n_{k+2}^{\overline{w_{0,1}}}} = n_k^{\overline{w_{0,2}}} + n_{k+1}^{\overline{w_{0,2}}} - \min(n_k^{\overline{w_{0,2}}}, n_{k+2}^{\overline{w_{0,2}}}) \\ \boldsymbol{n_{k+1}^{\overline{w_{0,1}}}} &= \min(n_k^{\overline{w_{0,2}}}, n_{k+2}^{\overline{w_{0,2}}}), \quad \boldsymbol{n_l^{\overline{w_{0,1}}}} = n_l^{\overline{w_{0,2}}} \ \forall l \notin \{k, k+1, k+2\} \end{split}$$



Le cristal $B(\infty)$

 $B(\infty)$ est le cristal de $U_q^-(\mathfrak{g})$, partie négative de l'algèbre universelle enveloppante quantifiée.

Le cristal $B(\infty)$

 $B(\infty)$ est le cristal de $U_q^-(\mathfrak{g})$, partie négative de l'algèbre universelle enveloppante quantifiée.

L'ensemble 33

Soit $\Lambda(\nu)$ la variété nilpotente de Lusztig de vecteur dimension ν . On note $\mathfrak{B}(\nu)$ l'ensemble des composantes irréductibles de $\Lambda(\nu)$ et

$$\mathfrak{B}:=igsqcup_{
u\in\mathbb{N}\mathcal{Q}_0}\mathfrak{B}(
u)$$

On a identification entre les isoclasses de modules rigides de $mod(\Lambda)$ et les éléments de \mathfrak{B} . [GLS11, Corollaire 2.2]

Des modules aux cristaux [KS97, Lus90]

 $\ensuremath{\mathfrak{B}}$ a une structure de cristal et il existe un isomorphisme de cristaux :

$$\Phi: \begin{array}{ccc} B(\infty) & \to & \mathfrak{B} \\ b & \mapsto & \Lambda_b \end{array}$$

Des modules aux cristaux [KS97, Lus90]

 ${\mathfrak B}$ a une structure de cristal et il existe un isomorphisme de cristaux :

$$\Phi: \begin{array}{ccc} B(\infty) & \to & \mathfrak{B} \\ b & \mapsto & \Lambda_b \end{array}$$

Des cristaux aux polytopes de Mirković-Vilonen [BKT14]

L'application Pol : $\begin{subarray}{c} {\sf mod}(\Lambda) & \to & {\sf HN} \\ {\cal M} & \mapsto & {\sf Pol}({\cal M}) \end{subarray} \begin{subarray}{c} {\sf prend} \end{subarray} \begin{subarray}{c} {\sf une} \end{subarray} \begin{subarray}{c} {\sf gen}(M) & {\sf prend} \end{subarray} \begin{subarray}{c} {\sf une} \end{subarray} \begin{subarray}{c} {\sf subarray} \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) & {\sf vision}(M) & {\sf vision}(M) \\ {\sf vision}(M) &$

En pratique

Lien module indécomposable \leftrightarrow polytope de Mirković-Vilonen

 $L(\lambda)$ représentation irréductible de \mathfrak{g} , base cristaline $B(\lambda)$ " \subset " $B(\infty)$.

Vecteurs de points extrémaux de $L(\lambda)$: éléments de l'orbite $W \cdot \lambda$.

À (λ, w) , Naito-Sagaki [NS09, Theorem 4.15] associent un polytope MV. À la même donnée, Geiss, Leclerc, Schröer [GLS11, Proposition 9.1] associent le vecteur V_k .

En combinant les deux : les Δ -vecteurs de V_k sont donnés par les longueurs des arêtes du polytope MV associé.

En pratique

Lien module indécomposable \leftrightarrow polytope de Mirković-Vilonen

 $L(\lambda)$ représentation irréductible de \mathfrak{g} , base cristaline $B(\lambda)$ " \subset " $B(\infty)$.

Vecteurs de points extrémaux de $L(\lambda)$: éléments de l'orbite $W \cdot \lambda$.

À (λ, w) , Naito-Sagaki [NS09, Theorem 4.15] associent un polytope MV. À la même donnée, Geiss, Leclerc, Schröer [GLS11, Proposition 9.1] associent le vecteur V_k .

En combinant les deux : les Δ -vecteurs de V_k sont donnés par les longueurs des arêtes du polytope MV associé.

Caractérisation obtenue

Pour tout représentant $\dot{v} \neq \dot{w}$, on peut déterminer les $\ell(v)$ premières coordonnées de $\Delta_{\dot{v}}(V_{\dot{w},k})$ à partir de la combinatoire de \overline{v} dans \overline{w} .

En pratique

Utilité pour l'algorithme

Donne la donnée de départ pour appliquer l'algorithme glouton

La formulation générale des $\ell(v)$ premières coordonnées des modules au cours de l'algorithme est une généralisation de leur description initiale.

Description initiale:

$$f_{\min}(k) \leq j \leq f(k)$$

Description générale:

$$f_{\min}(k)^{\alpha(k,m)\oplus} \leq j \leq f(k^{\alpha(k,m)+})$$



Bibliography i

- [BIRSo9] Aslak Bakke Buan, Osamu Iyama, Idun Reiten, and Jeanne Scott. **Cluster structures for 2-Calabi-Yau categories and unipotent groups.**Compositio Mathematica, 145(4):1035–1079, July 2009.
- [BKT14] Pierre Baumann, Joel Kamnitzer, and Peter Tingley. **Affine Mirković-Vilonen polytopes.**Publications mathématiques de l'IHÉS, 120(1):113–205, November 2014.
- [FZ99] Sergey Fomin and Andrei Zelevinsky. **Double Bruhat cells and total positivity.**Journal of the American Mathematical Society, 12(2):335–380, 1999.
- [FZ02] Sergey Fomin and Andrei Zelevinsky. **Cluster algebras I : Foundations.** *Journal of the American Mathematical Society*, 15(2) :497–529, 2002.
- [GLS11] Christof Geiss, Bernard Leclerc, and Jan Schröer. **Kac-Moody groups and cluster algebras.**Advances in Mathematics, 228(1):329–433, September 2011.

Bibliography ii

[KS97] Masaki Kashiwara and Yoshihisa Saito. **Geometric construction of crystal** bases.

Duke Mathematical Journal, 89(1):9–36, July 1997.

[Lus90] G. Lusztig. Canonical Bases Arising from Quantized Enveloping Algebras. II.

Progress of Theoretical Physics Supplement, 102:175–201, March 1990.

- [Lus94] George Lusztig. Total Positivity in Reductive Groups.
 In Jean-Luc Brylinski, Ranee Brylinski, Victor Guillemin, and Victor Kac, editors, Lie Theory and Geometry: In Honor of Bertram Kostant, Progress in Mathematics, pages 531–568. Birkhäuser, Boston, MA, 1994.
- [Mat64] Hideya Matsumoto. **Générateurs et relations des groupes de Weyl généralisés.**

Comptes rendus hebdomadaires des séances de l'Académie des Sciences, 258(13):3419, 1964.

Bibliography iii

[NS09] Satoshi Naito and Daisuke Sagaki. Mirković-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal.

Advances in Mathematics, 221(6):1804–1842, August 2009.

[SSVZOO] Boris Shapiro, Michael Shapiro, Alek Vainshtein, and Andrei Zelevinsky.

Simply laced Coxeter groups and groups generated by symplectic transvections.

The Michigan Mathematical Journal, 48(1):531-551, 2000.

Computation example

Un petit exemple.